• 제목/요약/키워드: spherical Powder

검색결과 419건 처리시간 0.026초

Template-free Synthesis and Characterization of Spherical Y3Al5O12:Ce3+ (YAG:Ce) Nanoparticles

  • Kim, Taekeun;Lee, Jin-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권10호
    • /
    • pp.2917-2921
    • /
    • 2014
  • Cerium-activated yttrium aluminate ($Y_3Al_5O_{12}:Ce^{3+}$) exhibiting a garnet structure has been widely utilized in the production of light emitting diodes (LEDs) as a yellow emitting phosphor. The commercialized yttrium aluminum garnet (YAG) phosphor is typically synthesized by a solid-state reaction, which produces irregular shape particles with a size of several tens of micrometers by using the top-down method. To control the shape and size of particles, which had been the primary disadvantage of top-down synthetic methods, we synthesized YAG:Ce nanoparticles with a diameter of 500 nm using a coprecipitation method under the atmospheric pressure without the use of template or special equipment. The precursor particles were formed by refluxing an aqueous solution of the nitrate salts of Y, Al, and Ce, urea, and polyvinylpyrrolidone (55 K) at $100^{\circ}C$ for 12 h. YAG:Ce nanoparticles were formed by the calcination of precursor particles at $1100^{\circ}C$ for 10 h under atmospheric conditions. The phase identification, microstructure, and photoluminescent properties of the products were evaluated by X-ray powder diffraction, scanning electron microscopy, absorption spectrum and photoluminescence analyses.

수열합성법에 의한 반도성 나노 (Ba1-xSbx)TiO3 분말제조 및 PTCR 특성평가 (Preparation and PTCR Characteristics of Semiconductive Nano (Ba1-xSbx)TiO3 Ceramic PowderS by Hydrothermal Process)

  • 최용각;이종현;이혁희;원창환
    • 한국재료학회지
    • /
    • 제12권3호
    • /
    • pp.169-175
    • /
    • 2002
  • Semiconductive nano $(Ba_{1-x}Sb_x)TiO_3$ powders were synthesized by the hydrothermal process and Sb was simultaneously doped in the hydrothermal condition. $(Ba_{1-x}Sb_x)TiO_3$ powders obtained from optimum condition(at 20$0^{\circ}C$ for 3hr) exhibited spherical shape, high purity and nano size. The PTCR characteristics was observed when 0.1 and 0.2 mole% Sb were added and sintered at over 130$0^{\circ}C$ for 1 hour, respectively. And The ceramics exhibit the PTCR characteristics with a resistively jump $ratio($\rho$_{max}/$\rho$_{min})$ of about $10^4$. Also we found that PTCR characteristics were dependent on the microstructure.

Synthesis of Metal and Ceramic Magnetic Nanoparticles by Levitational Gas Condensation (LGC)

  • Uhm, Y.R.;Lee, H.M.;Lee, G.J.;Rhee, C.K.
    • Journal of Magnetics
    • /
    • 제14권2호
    • /
    • pp.75-79
    • /
    • 2009
  • Nickel (Ni) and ferrite ($Fe_3O_4$, $NiFe_2O_4$) nanoparticles were synthesized by LGC using both wire feeding (WF) and micron powder feeding (MPF) systems. Phase evolution and magnetic properties were then investigated. The Ni nanopowder included magnetic-ordered phases. The LGC synthesis yielded spherical particles with large coercivity while the abnormal initial magnetization curve for Ni indicated a non-collinear magnetic structure between the core and surface layer of the particles. Since the XRD pattern cannot actually distinguish between magnetite ($Fe_3O_4$) and maghemite (${\gamma}-Fe_2O_3$) as they have a spinel type structure, the phase of the iron oxide in the samples was unveiled by $M{\ddot{o}}ssbauer$ spectroscopy. The synthesized Ni-ferrite consisted of single domain particles, including an unusual ionic state. The synthesized nanopowder bore an active surface due to the defects that affected abnormal magnetic properties.

침전법으로 제조한 Al2O3-ZrO2-Y2O3계 분말의 특성 (Properties of the Powders of the System Al2O3-ZrO2-Y2O3 Prepared by Precipitation Method)

  • 김준태;홍기곤;이홍림
    • 한국세라믹학회지
    • /
    • 제25권2호
    • /
    • pp.117-124
    • /
    • 1988
  • The properties of the powders of the system Al2O3-ZrO2-Y2O3 prepared by precipitation method were investigated. Al2(SO4)3$.$18H2O3, ZrOCl2$.$8H2O and YCl3$.$6H2O were used as starting materials. Amorphous aluminum hydrate prepared by precipitation method was completely transformed to alpha Al2O3 as a result of calcining at 1100$^{\circ}C$ for 1 hr and gamma, delta and theta phases appeared as transition phases. In ZrO2-Y2O3 system prepared by co-precipitation method, the crystallization temperature of ZrO2 was increase with Y2O3 contents. The coupled crystallization occured in coprecipitated Al2O3-ZrO2-Y2O3 system, therefore the formation temperature of alpha Al2O3 and ZrO2-Y2O3 system. In this ternary system, the powder morphology showed a particular shape which was composed of large Al2O3 grains having small spherical ZrO2 particles within large Al2O3 grain and relatively large ZrO2 particles along the grian boundaries.

  • PDF

Study on the Granulation Behavior of TiO2-PVA Composite Powders Prepared Via Spray Drying Technique

  • Avcioglu, Celal;Ozkal, Burak
    • 한국세라믹학회지
    • /
    • 제56권5호
    • /
    • pp.443-452
    • /
    • 2019
  • In this study, TiO2-polyvinyl alcohol (PVA) composite granules were prepared via spray drying technique. To investigate the effects of solid content and binder/powder ratio in the slurry on the granulation behavior of TiO2 powders, the feed compositions were designed to vary over a wide range. The morphology, actual densities, and average granule size and size distribution of the TiO2-PVA composite granules were characterized by using scanning electron microscopy technique, a gas pycnometer, and an image analyzing program (Image-J), respectively. The results indicate that solid content and the amount of PVA in the feedstock slurry are the dominant factors determining the granule morphology, size, and size distribution of TiO2-PVA composite. Moreover, it was observed that increasing the solid content and the amount of PVA in the slurry improved the granulation process and reduced the granule defects. For the preparation of spherical TiO2-PVA composite granules with the minimum amount of non-granulated powders, the optimized composition of the feedstock slurry was found to be 35 wt.% solid and 3 wt.% PVA.

Oxalate 공침법에 의한 Gd2O3Doped CeO2의 미분말 합성 및 그 소결특성 (Fine Powder Synthesis and It`s Sintering Characteristics of Gd2O3Doped CeO2 by the Oxalate Coprecipitation Method)

  • 최광훈;박성용;이주진
    • 한국전기전자재료학회논문지
    • /
    • 제15권1호
    • /
    • pp.46-55
    • /
    • 2002
  • 10mo1% Gd$_2$O$_3$ doped CeO$_2$ fine powders were synthesized by the oxalate coprecipitation method. The characteristics and sintering behavior of fine powders were investigated. The oxalate precipitates had the specific surface area of 150$m^2$/g, and appeared to be fine and spherical primary particles with a size of approximately 5.5nm. The decomposition of the precipitates occurred from a temperature around 30$0^{\circ}C$ and it was completed below 40$0^{\circ}C$, resulted in the formation of the oxide. The calcination temperature of the fine powders was suitable at 77$0^{\circ}C$. By introducing fine powders washed with alcohol and ball-milling process after calcination, the sintered body was possible to attain the value of 97% of the theoretical density at low temperature of 130$0^{\circ}C$

Electrochemical properties of $LiFePO_4$ cathode materials by hydrothermal route

  • Jin, Bo;Li, Hu;Park, Kyung-Hee;Gu, Hal-Bon;Park, Bok-Kee
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.363-364
    • /
    • 2007
  • Phospho-olivine $LiFePO_4$ cathode materials were prepared by hydrothermal reaction at different temperatures. The structural performance of $LiFePO_4$ powders were characterized by X-ray diffraction (XRD). $LiFePO_4$/Li batteries were characterized electrochemically by charge/discharge experiments. The XRD results demonstrate that $LiFePO_4$ powder has an orthorhombic olivine-type structure with a space group of Pnmb. Among the synthesized cathode materials, $LiFePO_4$synthesized at $170^{\circ}C$ and subsequently annealed at $500^{\circ}C$ shows the best electrochemical properties. It shows initial discharge capacity of $167\;mAh\;g^{-1}$ (98% of the theoretical capacity) close to the theoretical capacity of $LiFePO_4$ ($170\;mAh\;g^{-1}$) at 0.1 C rate, which is ascribed to the enhanced degree of crystallinity, better phase purity, more spherical and more finely dispersed nanoparticles, crystallization and activation of small amount impurity.

  • PDF

액적 분급 장치를 적용한 분무열분해 공정으로부터 합성된 실리카 분말의 특성 (The Characteristics of Silica Powders Prepared by Spray Pyrolysis Applying Droplet Classification Apparatus)

  • 강윤찬;주서희;구혜영;강희상;박승빈
    • 한국재료학회지
    • /
    • 제16권10호
    • /
    • pp.633-638
    • /
    • 2006
  • Silica powders with spherical shape and narrow size distribution were prepared by large-scale ultrasonic spray pyrolysis applying the droplet classification apparatus. On the other hand, silica powders prepared by large-scale ultrasonic spray pyrolysis without droplet classification apparatus had broad size distribution. Droplet classification apparatus used in this paper applied the principles of cyclone and dispersion plate with small holes. The droplets formed from the ultrasonic spray generator applying the droplet classification apparatus had narrow size distribution. The droplets with fine and large sizes were eliminated by droplet classification apparatus. The optimum flow rate of the carrier gas and diameter of the hole of the dispersion plate were studied to reduce the size distribution of the silica powders prepared by large-scale ultrasonic spray pyrolysis. The size distribution of the silica powders prepared by large-scale ultrasonic spray pyrolysis at the optimum preparation conditions was 0.76.

2차원 층상구조를 갖는 소결조제와 이를 활용한 세륨산화물 소결성 향상 (Sintering agents with 2-dimensional layered structure and the enhancement of sinterability of cerium oxide using them)

  • 박지영;오재명;박희정
    • 한국결정성장학회지
    • /
    • 제29권1호
    • /
    • pp.1-5
    • /
    • 2019
  • 산화물을 포함한 세라믹 재료의 물성은 소재 치밀도에 크게 영향을 받는다. 따라서 소재 치밀도를 높이기 위한 다양한 노력들이 진행되어왔다. 이중 많이 사용되는 전략으로 재료 소결 시 소결조제를 첨가하는 것이다. 기존의 소결조제는 3차원 구조를 갖는 구형의 분말이었다. 본 연구에서는 차별화 전략으로 세륨산화물의 소결 밀도를 높이기 위해 2차원 층상구조를 갖는 소결조제를 첨가하였다. 실제로 2차원 층상구조의 조결조제에 의해 소결밀도가 증가되는 것을 확인할 수 있었다. 2차원 층상구조 소재로 초나노 두께(~1 nm)를 갖는 $TiO_x$$MnO_x$ 나노쉬트가 이용되었다.

제주 화산석으로 합성한 제올라이트를 Polyacrylonitrile에 고정화한 흡착제를 이용한 구리와 스트론튬 이온의 제거 (Removal of Cu and Sr Ions using Adsorbent Obtained by Immobilizing Zeolite Synthesized from Jeju Volcanic Rocks in Polyacrylonitrile)

  • 이창한;이민규
    • 한국환경과학회지
    • /
    • 제27권12호
    • /
    • pp.1215-1226
    • /
    • 2018
  • In this study, PAN-SZ (polyacrylonitrile scoria zeolite) beads were prepared by immobilizing Na-A zeolite (SZ-A) synthesized from Jeju volcanic rocks (scoria) on the polymer PAN. FT-IR and TGA analysis results confirmed that the SZ-A was immobilized in the PAN-SZ beads. SEM images showed that the PAN-SZ beads are a spherical shape with 2 mm diameter and exhibit a porous inner structure inside the bead. The most suitable mixing ratio of PAN to SZ-A as the adsorbent for removing Sr ions was PAN/SZ-A = 0.2 g/0.3 g. The adsorption kinetic data for Cu and Sr ions were fitted well with the pseudo-second-order model. The Cu and Sr ion uptakes followed a Langmuir isotherm model and the maximum adsorption capacities at $20^{\circ}C$ were 84.03 mg/g and 75.19 mg/g, respectively. The amount of Sr ion adsorbed by SZ-A on the PAN-SZ beads was about 160 mg/g, which was similar to that adsorbed by SZ-A powder. Thus, the PAN-SZ beads prepared in this study are considered to be effective adsorbents for removing metal ions in aqueous solutions.