• Title/Summary/Keyword: spent fuel disposal

Search Result 202, Processing Time 0.025 seconds

Multi-body dynamics model for spent nuclear fuel transportation system under normal transport test conditions

  • Seongji Han;Gil-Eon Jeong;Hyeonbeen Lee;Woo-Seok Choi;Jin-Gyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4125-4133
    • /
    • 2023
  • The transportation of spent nuclear fuel is an important process that involves road and sea transport from an interim storage facility to storage and final disposal sites. As spent nuclear fuel poses a significant risk, carefully evaluating its vibration and shock characteristics under normal transport conditions is essential. In this regard, full-scale multi-modal transport tests (MMTT) have been conducted domestically and internationally. In this paper, we discuss the process of developing a multi-body dynamics (MBD) model to analytically simulate conditions that cannot be considered in tests. The MBD model is based on the KORAD-21 transportation system was validated using the Korean MMTT results from 2020 to 2021. This paper summarizes the details of the development and verification of the MBD model for the KORAD-21 transportation system under normal transport test conditions. This approach can be applicable to various transportation scenarios and systems, and the results of this study will help to ensure that nuclear fuel transportation is conducted safely and effectively.

Safety Assessment on Long-term Radiological Impact of the Improved KAERI Reference Disposal System (the KRS+)

  • Ju, Heejae;Kim, In-Young;Lee, Youn-Myoung;Kim, Jung-Woo;Hwang, Yongsoo;Choi, Heui-joo;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.75-87
    • /
    • 2020
  • The Korea Atomic Energy Research Institute (KAERI) has developed geological repository systems for the disposal of high-level wastes and spent nuclear fuels (SNFs) in South Korea. The purpose of the most recently developed system, the improved KAERI Reference Disposal System Plus (KRS+), is to dispose of all SNFs in Korea with improved disposal area efficiency. In this paper, a system-level safety assessment model for the KRS+ is presented with long-term assessment results. A system-level model is used to evaluate the overall performance of the disposal system rather than simulating a single component. Because a repository site in Korea has yet to be selected, a conceptual model is used to describe the proposed disposal system. Some uncertain parameters are incorporated into the model for the future site selection process. These parameters include options for a fractured pathway in a geosphere, parameters for radionuclide migration, and repository design dimensions. Two types of SNF, PULS7 from a pressurized water reactor and Canada Deuterium Uranium from a heavy water reactor, were selected as a reference inventory considering the future cumulative stock of SNFs in Korea. The highest peak radiological dose to a representative public was estimated to be 8.19×10-4 mSv·yr-1, primarily from 129I. The proposed KRS+ design is expected to have a high safety margin that is on the order of two times lower than the dose limit criterion of 0.1 mSv·yr-1.

Current Status and Projection of Spent Nuclear Fuel for Geological Disposal System Design (심지층 처분시스템 설계를 위한 사용후핵연료 현황 분석 및 예측)

  • Cho, Dong-Keun;Choi, Jong-Won;Hahn, Pil-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.1
    • /
    • pp.87-93
    • /
    • 2006
  • Inventories, and characteristics such as dimension, fuel rod array, weight, $^{235}U$ enrichment, and discharge burnup of spent nuclear fuel (SNF) generated from existing and planed nuclear power plants based on National 2nd Basic Plan for Electric Power Demand and Supply were investigated and projected to support geological disposal system design. The historical and projected inventory by the end 2057 is expected to be 20,500 and 14,800MTU for PWR and CANDU spent nuclear fuel, respectively. The quantity of SNF with initial $^{235}U$ enrichment of 4.5 wt.% and below was shown to be 96.5% in total. Average burnup of SNF revealed $\sim36$ GWD/MTU and $\sim40$ GWD/MTU for the period of 1994-1999 and 2000-2003, respectively. It is expected that the average burnup of SNF will be $\sim45$ GWD/MTU at the end of 2000's. From the comprehensive study, it was concluded that the imaginary SNF with $16\times16$ Korean Standard Fuel Assembly, cross section of $21.4cm\times21.4cm$, length of 453cm, mass of 672 kg, initial $^{235}U$ enrichment of 4.5 wt.%, discharge burnup of 55 GWD/MTU could cover almost all SNFs to be produced by 2057.

  • PDF

Optimization of Spent Nuclear Fuel Assembly Finite Element Model for Normal Transportation Condition Analysis (정상운반조건 해석을 위한 사용후핵연료집합체 유한요소모델 최적화)

  • Min Seek Kim;Min Jeong Park;Yoon-Suk Chang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.163-170
    • /
    • 2023
  • Since spent nuclear fuel assemblies (SFA) are transported to interim storage or final disposal facility after cooling the decay heat, finite element analysis (FEA) with simplification is widely used to show their integrity against cladding failure to cause dispersal of radioactive material. However, there is a lack of research addressing the comprehensive impact of shape and element simplification on analysis results. In this study, for the optimization of a typical pressurized water reactor SFA, different types of finite element models were generated by changing number of fuel rods, fuel rod element type and assembly length. A series of FEA in use of these different models were conducted under a shock load data obtained from surrogate fuel assembly transportation test. Effects of number of fuel rods, element type and length of assembly were also analyzed, which shows that the element type of fuel rod mainly affected on cladding strain. Finally, an optimal finite element model was determined for other practical application in the future.

Case of Geophysical Survey Guideline for Site Investigation of Spent Nuclear Fuel disposal: Focusing on airborne electromagnetic and seismic reflection survey (사용후핵연료 처분시설 부지조사를 위한 물리탐사 수행지침서 작성 사례 : 항공전자탐사와 탄성파 반사법탐사 중심으로)

  • NamYoung Kong;Hagsoo Kim;Yoonsup Moon;Manho Han
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.1
    • /
    • pp.69-83
    • /
    • 2024
  • Considering importance and specificity, site investigations for deep geological disposal of Spent Nuclear Fuel require stringent quality control, unlike general geotechnical investigations for tunnels and bridges. In this study, we present a case of selecting geophysical survey method for individual site investigation stage and preparing geophysical survey guideline. The proposed geophysical survey guidelines include procedures, considerations, and quality control for exploration planning, data acquisition, data processing, and interpretation. They comprehensively summarize the contents of airborne electromagnetic survey and seismic reflection survey.

Preliminary Design Evaluation of Auxiliary Equipment for Transportation and Storage of Multi-purpose Canister (사용후핵연료 다목적 캐니스터의 운반 및 저장 보조 설비에 대한 예비설계 평가)

  • Chang Min Shin;Sang Hwan Lee;Yeon Oh Lee;In Su Jung;Gil Yong Cha
    • Journal of Radiation Industry
    • /
    • v.17 no.3
    • /
    • pp.309-320
    • /
    • 2023
  • A multi-purpose canister (MPC) was developed for the purpose of transportation, storage and disposal of spent nuclear fuel (SNF) and has the advantage of minimizing repackaging between management stages of SNF. Considering the typical rock characteristics in Korea, a disposal canister is expected to contain 4 assemblies of Pressurized water reactor (PWR) SNF. The capacity of the MPC should be similarly designed with the disposal canister. However, the MPC with four SNF assemblies is expected to be less efficient in transporting and storing compared to a large-capacity canister. Therefore, a preliminary concept was derived for an auxiliary equipment that can transport and store multiple MPCs in a large overpack. A previously derived concept from US was thoroughly reviewed, and the preliminary concept was revised considering domestic situations including crane capacity and others. In addition, the safety of the normal transportation and storage of the MPC placed in transportation and storage overpack was evaluated with the auxiliary equipment.

A Review of In-Situ Characterization and Quality Control of EDZ During Construction of Final Disposal Facility for Spent Nuclear Fuel (사용후핵연료 최종처분장 건설과정에서의 굴착손상영역(EDZ)의 현장평가 방법 및 시공품질관리 체계에 관한 사례검토)

  • Kim, Hyung-Mok;Nam, Myung Jin;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.32 no.2
    • /
    • pp.107-119
    • /
    • 2022
  • Excavation-Disturbed Zone (EDZ) is an important design factor in constructing final disposal facilities for spent nuclear fuel, since EDZ affects mechanical stability including a spacing between disposal holes, and the hydraulic properties within EDZ plays a significant role in estimating in-flow rate of groundwater as well as a subsequent corrosion rate of a canister. Thus, it is highly required to characterize in-situ EDZ with precision and control the EDZ occurrence while excavating disposal facilities and constructing relevant underground research facilities. In this report, we not only reviewed EDZ-related researches carried out in the ONKALO facility of Finland but also examined appropriate methods for field inspection and quality control of EDZ occurrence. From the review, GPR can be the most efficient method for in-situ characterization of EDZ since it does not demand drilling a borehole that may disturb a surrounding environment of caverns. And the EDZ occurrence was dominant at a cavern floor and it ranged from 0 to 70 cm. These can provide useful information in developing necessary EDZ-related regulations for domestic disposal facilities.

A Method to Estimate the Burnup Using Initial Enrichment, Cooling Time, Total Neutron Source Intensity and Gamma Source Activities in Spent Fuels

  • Sohee Cha;Kwangheon Park;Mun-Oh Kim;Jae-Hun Ko;Jin-Hyun Sung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.303-313
    • /
    • 2023
  • Spent fuels (SFs) are stored in a storage pool after discharge from nuclear power plants. They can be transferred to for the further processes such as dry storage sites, processing plants, or disposal sites. One of important measures of SF is the burnup. Since the radioactivity of SF is strongly dependent on its burnup, the burnup of SF should be well estimated for the safe management, storage, and final disposal. Published papers about the methodology for the burnup estimation from the known activities of important radioactive sources are somewhat rare. In this study, we analyzed the dependency of the burnup on the important radiation source activities using ORIGEN-ARP, and suggested simple correlations that relate the burnup and the important source activities directly. A burnup estimation equation is suggested for PWR fuels relating burnup with total neutron source intensity (TNSI), initial enrichment, and cooling time. And three burnup estimation equations for major gamma sources, 137Cs, 134Cs, and 154Eu are also suggested.

Rigid Body Dynamic Analysis on the Spent Nuclear Fuel Disposal Canister under Accidental Drop and Impact to the Ground: Numerical analysis (사고로 지면으로 추락낙하 충돌하는 고준위폐기물 처분용기에 대한 기구동역학 해석: 수치해석)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.5
    • /
    • pp.373-384
    • /
    • 2013
  • This paper is the second paper among two papers which constitute the paper about the rigid body dynamic analysis on the spent nuclear fuel disposal canister under accidental drop and impact to the ground. This paper performed the numerical study on the rigid body dynamic analysis. Through this study the impulsive force which is occurring in the spent nuclear fuel disposal canister under accidental drop and impact to the ground and required for the structural safety design of the canister is computed numerically. The main content of this numerical study is about the technical method how to compute the impulsive forces occurring in the canister under accidental drop and impact to the ground by using the commercial rigid body dynamic analysis computer codes. On the basis of this study the impulsive force which is occurring in the canister in the case of collision with the ground is numerically computed. This numerically computed impulsive force is increasing as the canister weight is increasing, and the canister falls plumb down and collides with the ground in three types according to the analysis results.