• Title/Summary/Keyword: speeded up robust features

Search Result 63, Processing Time 0.031 seconds

Depth-hybrid speeded-up robust features (DH-SURF) for real-time RGB-D SLAM

  • Lee, Donghwa;Kim, Hyungjin;Jung, Sungwook;Myung, Hyun
    • Advances in robotics research
    • /
    • v.2 no.1
    • /
    • pp.33-44
    • /
    • 2018
  • This paper presents a novel feature detection algorithm called depth-hybrid speeded-up robust features (DH-SURF) augmented by depth information in the speeded-up robust features (SURF) algorithm. In the keypoint detection part of classical SURF, the standard deviation of the Gaussian kernel is varied for its scale-invariance property, resulting in increased computational complexity. We propose a keypoint detection method with less variation of the standard deviation by using depth data from a red-green-blue depth (RGB-D) sensor. Our approach maintains a scale-invariance property while reducing computation time. An RGB-D simultaneous localization and mapping (SLAM) system uses a feature extraction method and depth data concurrently; thus, the system is well-suited for showing the performance of the DH-SURF method. DH-SURF was implemented on a central processing unit (CPU) and a graphics processing unit (GPU), respectively, and was validated through the real-time RGB-D SLAM.

Performance Evaluation and Analysis of Modified Speeded Up Robust Features(SURF) for Mobile Phones (휴대 단말을 위하여 개선된 Speeded Up Robust Features(SURF) 알고리듬의 성능 측정 및 분석)

  • Seo, Jung-Jin;Yoon, Kyoungro
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.276-279
    • /
    • 2011
  • 최근 스마트폰의 카메라를 이용한 시각 검색(Visual Search) 어플리케이션(Application)을 많은 사람들이 이용하고 있고, 이러한 시각 검색 어플리케이션은 여러 가지 특징 추출 방법을 사용하고 있다. 본 논문에서는 특징 추출 방법 중 하나인 Speeded Up Robust Features (SURF)를 사용하여 모바일 환경에 적합한 특징 추출 및 정합 방법에 대하여 기술한다. 모바일 기기들은 기존의 일반 PC환경에 비해 비교적 낮은 성능의 하드웨어 조건을 가지고 있다. 하지만 SURF 특징점 추출 방법 및 정합 방법은 계산량이 많고 복잡하여 실시간 및 모바일 환경에 사용하기엔 제약이 따른다. 모바일 환경에서 높은 성능을 내기 위해 기술자(Descriptor) 차원 감소와 라플라시안(Laplacian) 부호를 이용한 정합, 그리고 최적의 거리 비율로 정합하는 방법을 제안한다.

  • PDF

A Method for Improving Object Recognition Using Pattern Recognition Filtering (패턴인식 필터링을 적용한 물체인식 성능 향상 기법)

  • Park, JinLyul;Lee, SeungGi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.122-129
    • /
    • 2016
  • There have been a lot of researches on object recognition in computer vision. The SURF(Speeded Up Robust Features) algorithm based on feature detection is faster and more accurate than others. However, this algorithm has a shortcoming of making an error due to feature point mismatching when extracting feature points. In order to increase a success rate of object recognition, we have created an object recognition system based on SURF and RANSAC(Random Sample Consensus) algorithm and proposed the pattern recognition filtering. We have also presented experiment results relating to enhanced the success rate of object recognition.

Comparative Analysis of the Performance of SIFT and SURF (SIFT 와 SURF 알고리즘의 성능적 비교 분석)

  • Lee, Yong-Hwan;Park, Je-Ho;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.59-64
    • /
    • 2013
  • Accurate and robust image registration is important task in many applications such as image retrieval and computer vision. To perform the image registration, essential required steps are needed in the process: feature detection, extraction, matching, and reconstruction of image. In the process of these function, feature extraction not only plays a key role, but also have a big effect on its performance. There are two representative algorithms for extracting image features, which are scale invariant feature transform (SIFT) and speeded up robust feature (SURF). In this paper, we present and evaluate two methods, focusing on comparative analysis of the performance. Experiments for accurate and robust feature detection are shown on various environments such like scale changes, rotation and affine transformation. Experimental trials revealed that SURF algorithm exhibited a significant result in both extracting feature points and matching time, compared to SIFT method.

A Multiple Features Video Copy Detection Algorithm Based on a SURF Descriptor

  • Hou, Yanyan;Wang, Xiuzhen;Liu, Sanrong
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.502-510
    • /
    • 2016
  • Considering video copy transform diversity, a multi-feature video copy detection algorithm based on a Speeded-Up Robust Features (SURF) local descriptor is proposed in this paper. Video copy coarse detection is done by an ordinal measure (OM) algorithm after the video is preprocessed. If the matching result is greater than the specified threshold, the video copy fine detection is done based on a SURF descriptor and a box filter is used to extract integral video. In order to improve video copy detection speed, the Hessian matrix trace of the SURF descriptor is used to pre-match, and dimension reduction is done to the traditional SURF feature vector for video matching. Our experimental results indicate that video copy detection precision and recall are greatly improved compared with traditional algorithms, and that our proposed multiple features algorithm has good robustness and discrimination accuracy, as it demonstrated that video detection speed was also improved.

Speed Improvement of SURF Matching Algorithm Using Reduction of Searching Range Based on PCA (PCA기반 검색 축소 기법을 이용한 SURF 매칭 속도 개선)

  • Kim, Onecue;Kang, Dong-Joong
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.7
    • /
    • pp.820-828
    • /
    • 2013
  • Extracting unique features from an image is a fundamental issue when making panorama images, acquiring stereo images, recognizing objects and analyzing images. Generally, the task to compare features to other images requires much computing time because some features are formed as a vector which has many elements. In this paper, we present a method that compares features after reducing the feature dimension extracted from an image using PCA(principal component analysis) and sorting the features in a linked list. SURF(speeded up robust features) is used to describe image features. When the dimension reduction method is applied, we can reduce the computing time without decreasing the matching accuracy. The proposed method is proved to be fast and robust in experiments.

SURF algorithm to improve Correspondence Point using Geometric Features (기하학적 특징을 이용한 SURF 알고리즘의 대응점 개선)

  • Kim, Ji-Hyun;Koo, Kyung-Mo;Kim, Cheol-Ki;Cha, Eui-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.07a
    • /
    • pp.43-46
    • /
    • 2012
  • 컴퓨터 비전을 이용한 다양한 응용 분야에 있어서, 특징점을 이용한 응용 분야가 많이 이루어지고 있다. 그 중에 Global feature는 표현의 위험성과 부정확성으로 인해서 많이 사용되고 있지 않으며, Local feature를 이용한 연구가 주로 이루고 있다. 그 중에 SURF(Speeded-Up Robust Features) 알고리즘은 다수의 영상에서 같은 물리적 위치에 있는 동일한 특징점을 찾아서 매칭하는 방법으로 널리 알려진 특징점 매칭 알고리즘이다. 하지만 SURF 알고리즘을 이용하여 특징점을 매칭하여 정합 쌍을 구하였을 때 매칭되는 특징점들의 정확도가 떨어지는 단점이 있다. 본 논문에서는 특징점 매칭 알고리즘인 SURF를 사용하여 대응되는 특징점들을 들로네 삼각형의 기하학적 특징을 이용하여 정확도가 높은 특징점을 분류하여 SURF 알고리즘의 매칭되는 대응점들의 정확도를 높이는 방법을 제안한다.

  • PDF

Error Correction Scheme in Location-based AR System Using Smartphone (스마트폰을 이용한 위치정보기반 AR 시스템에서의 부정합 현상 최소화를 위한 기법)

  • Lee, Ju-Yong;Kwon, Jun-Sik
    • Journal of Digital Contents Society
    • /
    • v.16 no.2
    • /
    • pp.179-187
    • /
    • 2015
  • Spread of smartphone creates various contents. Among many contents, AR application using Location Based Service(LBS) is needed widely. In this paper, we propose error correction algorithm for location-based Augmented Reality(AR) system using computer vision technology in android environment. This method that detects the early features with SURF(Speeded Up Robust Features) algorithm to minimize the mismatch and to reduce the operations, and tracks the detected, and applies it in mobile environment. We use the GPS data to retrieve the location information, and use the gyro sensor and G-sensor to get the pose estimation and direction information. However, the cumulative errors of location information cause the mismatch that and an object is not fixed, and we can not accept it the complete AR technology. Because AR needs many operations, implementation in mobile environment has many difficulties. The proposed approach minimizes the performance degradation in mobile environments, and are relatively simple to implement, and a variety of existing systems can be useful in a mobile environment.

Dimensionality Reduction of Speeded Up Robust Features Using Neural Networks for Object Recognition in Mobile Environments (모바일 환경 영상인식을 위한 신경망기반 Speeded Up Robust Features 차원 감소)

  • Yoon, Du-Mim;Kim, Kyung-Joong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.421-424
    • /
    • 2011
  • 최근에 스마트폰이 발달하고 대부분의 모바일 기기에 카메라가 달리면서 카메라를 이용한 애플리케이션 또한 늘어나고 있는데 기존의 PC상에서 로고 인식등을 위해 사용되는 SURF를 이용한 이미지 매칭에는 유클리드 거리 계산을 사용하고 있다. 그러나 이 방법으로는 PC보다는 사양이 낮은 모바일 기기에 적용하기에는 기존에 사용하고 있는 방법이 인식할 이미지마다 모든 특징점을 비교하는 방법을 사용하기 때문에 연산량이 높은 편이다. 본 논문에서는 미리 인식할 이미지를 뉴럴넷에 학습시킨 뒤, 뉴럴넷을 필터링으로 사용하여 일부의 특징점만을 비교해 연산량을 줄여서 속도를 향상시키는 방법을 제안하였으며 이를 이용하여 대략 30%가량의 성능 향상이 나타난 것을 알 수 있었다.

A Multi-Stage Approach to Secure Digital Image Search over Public Cloud using Speeded-Up Robust Features (SURF) Algorithm

  • AL-Omari, Ahmad H.;Otair, Mohammed A.;Alzwahreh, Bayan N.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.65-74
    • /
    • 2021
  • Digital image processing and retrieving have increasingly become very popular on the Internet and getting more attention from various multimedia fields. That results in additional privacy requirements placed on efficient image matching techniques in various applications. Hence, several searching methods have been developed when confidential images are used in image matching between pairs of security agencies, most of these search methods either limited by its cost or precision. This study proposes a secure and efficient method that preserves image privacy and confidentially between two communicating parties. To retrieve an image, feature vector is extracted from the given query image, and then the similarities with the stored database images features vector are calculated to retrieve the matched images based on an indexing scheme and matching strategy. We used a secure content-based image retrieval features detector algorithm called Speeded-Up Robust Features (SURF) algorithm over public cloud to extract the features and the Honey Encryption algorithm. The purpose of using the encrypted images database is to provide an accurate searching through encrypted documents without needing decryption. Progress in this area helps protect the privacy of sensitive data stored on the cloud. The experimental results (conducted on a well-known image-set) show that the performance of the proposed methodology achieved a noticeable enhancement level in terms of precision, recall, F-Measure, and execution time.