• Title/Summary/Keyword: speed variations factors

Search Result 77, Processing Time 0.023 seconds

Analysis about Speed Variations Factors and Reliability of Traffic Accident Collision Interpretation (교통사고 충돌해석의 속도변화 인자 및 신뢰성에 관한 연구)

  • Lim, Chang-Sik;Choi, Yang-Won;Jeong, Ho-Kyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4D
    • /
    • pp.539-546
    • /
    • 2011
  • Traffic accident collision interpretation is composed of various shapes, and speed variations working to the vehicle during collision are utilized as a very important factor in evaluating collision degrees between vehicles and safety of passengers who got in the vehicle. So, methods of interpreting results on speed variations utilizing simulation programs on the collision interpretation become necessary. By the way, reliability evaluation on each program is being required because various collision interpretations simulations are spread widely. This study utilized collision interpretation programs such as EDSMAC and PC-CRASH adopting completely different physical approaches, and then carried out collision experiments of one-dimensional front and two-dimensional right angle while changing values of a lot of collision factors such as vehicle's weight, center of gravity, rolling resistance, stiffness coefficient, and braking forces among early input conditions. Also, the study recognized effects of collision factors to speed variations as output results during crashing. As a result of this research, two simulation programs showed same speed variations together on the vehicle's weight, center of gravity, and braking forces. Stiffness coefficient of the vehicle reacted to EDSMAC only, and rolling resistance coefficient did not affect any particular influences on speed variations. However, there appeared a bit comparative differences from the speed variation's values, and this is interpreted as responding outcomes by applying fixed properties values to each simulation program plainly. Therefore, reliability on analysis of traffic accident collisions shall be improved by doing speed analysis after taking the fixed value of simulation programs into consideration.

Stability Analysis of the Tension Control System of a High-speed Roll-to-Roll Printing Machine (고속 롤투롤 인쇄기의 장력제어시스템 안정도 해석)

  • Kang, Chul-Goo;Lee, Bong-Ju
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.873-878
    • /
    • 2007
  • Stability of high-speed roll-to-roll printing machines is one of the most important factors that are required for the printing machines to operate properly and to obtain reasonable printing performance. This paper proposes a new model for the web-tension system of a high-speed gravure printing machine considering span-length variations due to dancer rollers, and analyzes the stability of plant dynamics of the printing machine using the proposed model. Span-length variations due to dancer motions are considered for the modeling of plant dynamics in two ways; one is to include the effect of span-length variations without considering dancer inertias and viscous frictions, and the other is to include the effect of span-length variations with considering dancer inertias and viscous frictions. The stability of the plant model is analyzed for various web-speeds using the eigenvalues of the linearized model about operating points.

  • PDF

A Microscopic Analysis on the Fundamental Diagram and Driver Behavior (교통기본도와 운전자 행태에 대한 미시적 분석)

  • Kim, Taewan
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.183-190
    • /
    • 2012
  • PURPOSES : The fundamental diagram provides basic information necessary in the analysis of traffic flow and highway operation. When traffic flow is congested, the density-flow points in the fundamental diagram are widely scattered and move in a stochastic manner. This paper investigates the pattern of density-flow point transitions and identifies car-following behaviors underlying the density-flow transitions. METHODS : From a microscopic analysis of 722 fundamental diagrams of NGSIM data, a total of 20 transition patterns of fundamental diagrams are identified. Prominent features of the transition patterns are explained by the behavior of the leader and follower. RESULTS : It is found out that the average speed and the speed difference between the leader and the follower critically determine the density-flow transition pattern. The density-flow path is very sensitive to the values of vehicle speed and spacing especially at low speed and high density such that most fluctuations in the fundamental diagram in the congested regime is due to the noise of speed and spacing variations. CONCLUSIONS : The result of this study suggests that the average speed, the speed difference between the leader and the follower, and the random variations of speed and spacing are dominant factors that explain the transition patterns of a fundamental diagram.

An Investigation on Thrust Properties under Wind Shear for an On-Shore 2 MW Wind Turbine (윈드 쉬어에 의한 2MW급 육상용 풍력터빈의 추력 특성 확인)

  • Lim, Chae Wook
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.14-18
    • /
    • 2016
  • Multi-MW wind turbines have very large blades over 40~50 m in length. Some factors like wind shear and tower shadow make an effect on asymmetric loads on the blades. Larger asymmetric loads are produced as the length of blade is getting longer. In this paper, a 2 MW on-shore wind turbine is considered and variations of thrust on 3 blades and rotor hub under wind shear are calculated by using a commercial Bladed S/W and dynamic properties of the thrust variations are investigated. It is shown that the amplitude of the asymmetric thrust on each blade under wind shear is getting larger as the wind speed increases, the frequency of the thrust variation on each blade is same as the one of rotor speed, and the frequency of the thrust variation at rotor hub is 3 times as high as the one of rotor speed.

Understanding and Reducing Performance Variation in New Product Development Using Paper Helicopter Experiment (종이 헬리콥터 실험을 통한 개발단계 성능변동의 이해와 개선)

  • Shin, Byung-Cheol;Kim, Si-Ung;Jeong, Sun Min;Byun, Jai-Hyun;Nam, Yong-Seog
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.4
    • /
    • pp.589-606
    • /
    • 2015
  • Purpose: In developing new products, reducing performance variation is important for competitiveness factors such as quality, cost, and delivery. This paper aims at evaluating three performance variations; measurement, performance evaluation, and manufacturing variations, and then improving product and process design, focused on paper helicopter making case study. Methods: For measurement system analysis, gage R&R (repeatability and reproducibility), linearity, stability are evaluated. Since gage R&R are not satisfactory, the measurement system is improved by adopting voice memos application of iPhone and providing standard measurement procedure. To evaluate performance variation, product deterioration and environment factor (wind speed) is considered. Since the existing design is sensitive to these noise factors, a new product design is developed, which is proven to be robust to the noise factors. Finally, manufacturing variations are evaluated with five factors which can cause variation in flight time. To reduce the impact of three significant factors, three improvement methods are applied. Results: Three performance variations are evaluated and robust paper helicopter design is presented. Conclusion: To reduce measurement and process variations, improved measurement method and paper helicopter making procedure are proposed. A new product design is also presented which is robust to deterioration and environmental variation. This paper is expected to benefit students and practitioners who want to have hands-on knowledge on new product quality improvement.

The assessment of the Spatial Variation of the Wind Field using the Meso-velocity Scale and its Contributing Factors (중간 속도 규모를 이용한 바람장의 균질성 평가 및 영향요소 분석)

  • Lee, Seong-Eun;Shin, Sun-Hee;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.343-353
    • /
    • 2010
  • A regional wind network with complex surface conditions must be designed with sufficient space and time resolution to resolve the local circulations. In this study, the spatial variations of the wind field observed in the Seoul and Jeju regional networks were evaluated in terms of annual, seasons, and months to assess the spatial homogeneity of wind fields within the regional networks. The coherency of the wind field as a function of separation distance between stations indicated that significant coherency was sometimes not captured by the network, as inferred by low correlations between adjacent stations. A meso-velocity scale was defined in terms of the spatial variability of the wind within the network. This problem is predictably most significant with weak winds, dull prevailing wind, clear skies and significant topography. The relatively small correlations between stations imply that the wind at a given point cannot be estimated by interpolating winds from the nearest stations. For the Seoul and Jeju regional network, the meso-velocity scale has typically a same order of magnitude as the speed of the network averaged wind, revealing the large spatial variability of the Jeju network station imply topography and weather. Significant scatter in the relationship between spatial variability of the wind field and the wind speed is thought to be related to thermally-generated flows. The magnitude of the mesovelocity scale was significantly different along separation distance between stations, wind speed, intensity of prevailing wind, clear and cloudy conditions, topography. Resultant wind vectors indicate much different flow patterns along condition of contributing factors. As a result, the careful considerations on contributing factors such as prevailing wind in season, weather, and complex surface conditions with topography and land/sea contrast are required to assess the spatial variations of wind field on a regional network. The results in the spatial variation from the mesovelocity scale are useful to represent the characteristics of regional wind speed including lower surface conditions over the grid scale of large scale atmospheric model.

Fluctuation in operational energy efficiency of ships and its implications for performance appraisal

  • Zhang, Shuang;Yuan, Haichao;Sun, Deping
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.367-378
    • /
    • 2021
  • This paper develops a dynamic regression model to quantify the contribution of key external factors to operational energy efficiency of ships. On this basis, kernel density estimation is applied to explore distribution patterns of fluctuations in operational performance. An empirical analysis based on these methods show that distribution of fluctuations in Energy Efficiency Operational Indicator (EEOI) is leptokurtic and fat tailed, rather than a normal one. Around 85% of fluctuations in EEOI can be jointly explained by capacity utilization and sailing speed, while the rest depend on other external factors largely beyond control. The variations in capacity utilization and sailing speed cannot be fully passed on to the energy efficiency performance of ships, due to complex interactions between various external factors. The application of the methods is demonstrated, showing a potential approach to develop a rating mechanism for use in the legally binding framework on operational energy efficiency of ships.

Sliding Mode Control of SPMSM Drivers: An Online Gain Tuning Approach with Unknown System Parameters

  • Jung, Jin-Woo;Leu, Viet Quoc;Dang, Dong Quang;Choi, Han Ho;Kim, Tae Heoung
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.980-988
    • /
    • 2014
  • This paper proposes an online gain tuning algorithm for a robust sliding mode speed controller of surface-mounted permanent magnet synchronous motor (SPMSM) drives. The proposed controller is constructed by a fuzzy neural network control (FNNC) term and a sliding mode control (SMC) term. Based on a fuzzy neural network, the first term is designed to approximate the nonlinear factors while the second term is used to stabilize the system dynamics by employing an online tuning rule. Therefore, unlike conventional speed controllers, the proposed control scheme does not require any knowledge of the system parameters. As a result, it is very robust to system parameter variations. The stability evaluation of the proposed control system is fully described based on the Lyapunov theory and related lemmas. For comparison purposes, a conventional sliding mode control (SMC) scheme is also tested under the same conditions as the proposed control method. It can be seen from the experimental results that the proposed SMC scheme exhibits better control performance (i.e., faster and more robust dynamic behavior, and a smaller steady-state error) than the conventional SMC method.

Effects of Operating Conditions of an Air-Classifier Mill on the Particle Size of Fine Powder (공기분급식 미분쇄기의 운전조건이 미세분말의 크기에 미치는 영향)

  • Shin, Eung-Soo;Kim, Kee-Sung;Kim, Young-Wook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.426-433
    • /
    • 2016
  • This paper investigates the effects of operating conditions of an air classifier mill (ACM) on the particle sizes of PVC and rice hull. Based on the Box-Behnken matrix, the pulverization experiments were performed considering three operating factors: the air flow rate, the classifier speed and the mill speed. The response surface methodology was applied to identify the effects of the operating factors on the particle size. Results show that the particle sizes are governed by the linear variations of the operating factors. As less air is supplied and the mill rotates more slowly, the powder of both PVC and rice hull becomes finer. Furthermore, the classifier speed has a significant effect on the PVC powder but almost no effect on the rice hull powder. Thus, it is found that strong interactions exist between the material characteristics of a particle and the operating conditions of the ACM.

Statistical Analysis of Cutting Force for End Milling with Different Cutting Tool Materials (공구재종에 따른 엔드밀 가공의 절삭력에 관한 통계적해석)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.4
    • /
    • pp.86-91
    • /
    • 2016
  • End milling is an important and common machining operation because of its versatility and capability to produce various profiles and curved surfaces. This paper presents an experimental study of the cutting force variations in the end milling of SM25C with HSS(high speed steel) and carbide tool. This paper involves a study of the Taguchi design application to optimize cutting force in a end milling operation. The Taguchi design is an efficient and effective experimental method in which a response variable can be optimized, given various control and noise factors, using fewer resources than a factorial design. This study included feed rate, spindle speed and depth of cut as control factors, and the noise factors were different cutting tool in the same specification. An orthogonal array of $L_9(3^3)$ of ANOVA analyses were carried out to identify the significant factors affecting cutting force, and the optimal cutting combination was determined by seeking the best cutting force and signal-to-noise ratio. Finally, confirmation tests verified that the Taguchi design was successful in optimizing end milling parameters for cutting force.