• Title/Summary/Keyword: speed limits

Search Result 382, Processing Time 0.025 seconds

Estimate of the power characteristics of the 500kw wind turbine based on 3D numerical solutions (500kW급 풍력터빈의 성능평가에 관한 수치해석적 연구)

  • KIM Beom-Seok;LEE Jin-Seok;KIM Jeong-Hwan;LEE Do-Hyung;LEE Young-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.140-145
    • /
    • 2002
  • The purpose of this 3-D numerical simulation is to calculate and examine a 500 kW Horizontal Axis Wind Turbine (HAWT) power performance and compare to calculation data(BEM method) from Delft University. The experimental approach, which has been the main method of investigation, appears to be reaching its limits, the cost increasing relate with the size of wind turbines. Hence, the use of Computational Fluid Dynamics (CFD) techniques and Navier-Stokes Solvers are considered a very serious contender. We has used the CFD software package CFX-TASC flow as a modeling tool to predict the power performance of a wind turbine on the basis of its geometry and operating data. The wind turbine with 40m diameters rotor, it was scaled to compare with the calculation data from delft university. The HAWT, which has eight-rpm variations are investigated respectively. The pitch angle is $+0.5^{\circ}$ and wind speed is fixed at 5m/s. The tip speed ratio (TSR) of the HAWT ranging from 2.89 to 9.63.

  • PDF

Challenges in the Production of Thin Coatings at High Line Speed

  • Michel, Dubois;Luc, Warichet;Jose, Callegari
    • Corrosion Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Cost reduction of products is and will always be a key objective of industrials. However, it is well identified that the wiping process reaches its limits at high line speed in general and especially thin coatings. If wiping models predict that it is possible to reach 32-37 g/$m^2$ of pure Zinc at 180 m/min provided the nozzle to strip distance can be reduced to 6mm, the possibility to reach that process window industrially with sufficient robustness is debated. 3 key problems are reviewed and analyzed: Zinc splashing and liquid drop emissions of various forms, the production of skimming and the noise generated by the nozzles. The available data and models are firstly used to predict phenomena. Secondly, videos and pictures from the lines showing what really happens on the edges especially in case of a strip width change are analyzed. Whereas the predicted level of skimming to remove from the pot is expected very high, it turns out that the target may be very close to the full splashing phenomena and that the most critical industrial situation is related to strip specification changes. It is then expected that the industrial feasibility of the 32-37 g/$m^2$ at 180 m/min will depend strongly on the amount of incoming strip with the same width that can be processed continuously.

Magnetic Field Strength in the Upper Solar Corona Using White-light Shock Structures Surrounding Coronal Mass Ejections

  • Kim, Roksoon;Gopalswamy, Nat;Moon, Yongjae;Cho, Kyungsuk;Yashiro, Seiji
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.114.1-114.1
    • /
    • 2012
  • To measure the magnetic field strength in the solar corona, we examined 10 fast (>1000 km/s) limb coronal mass ejections (CMEs) that show clear shock structures in Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph images. By applying the piston-shock relationship to the observed CME's standoff distance and electron density compression ratio, we estimated the Mach number, Alfven speed, and magnetic field strength in the height range 3-15 solar radii (Rs). The main results from this study are as follows: (1) the standoff distance observed in the solar corona is consistent with those from a magnetohydrodynamic model and near-Earth observations; (2) the Mach number as a shock strength is in the range 1.49-3.43 from the standoff distance ratio, but when we use the density compression ratio, the Mach number is in the range 1.47-1.90, implying that the measured density compression ratio is likely to be underestimated owing to observational limits; (3) the Alfven speed ranges from 259 to 982 km/s and the magnetic field strength is in the range 6-105 mG when the standoff distance is used; (4) if we multiply the density compression ratio by a factor of two, the Alfven speeds and the magnetic field strengths are consistent in both methods; and (5) the magnetic field strengths derived from the shock parameters are similar to those of empirical models and previous estimates.

  • PDF

A study on the optimal design of automobile suspension system (자동차 懸架裝置의 최적설계에 관한 연구)

  • Kim, Ho-Ryong;Choi, Sub
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.437-443
    • /
    • 1987
  • An optimal design to improve the ride quality was performed with the time and frequency domain analysis based on both of deterministic and random road profiles. The objective function is established to minimize the absorbed power while the constraints are taken so as to satisfy the condition for the stability of vehicle. The result of the optimal design shows that the rms for the acceleration of a driver and his seat is within the critical values for the ride quality from ISO. The optimal values obtained show that the maximum absolute acceleration of the driver and his seat has significantly been reduced and the reference limits on the relative displacement have satisfied their feasibility. As the optimal value according to a specific speed is the results from the optimization process, a global optimum value should be determined to be the one which gives th minimum values of total sum of absorbed power with respect to various speed.

The chatter vibration in metal cutting using the low stiffness tool (저강성 공구를 이용한 절삭에서의 채터 진동)

  • 김정석;이병호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.424-432
    • /
    • 1989
  • A mathematical model is developed for determination of the dynamic cutting force from static cutting data. The dynamic cutting force is analytically expressed by the static cutting coefficient and the dynamic cutting coefficient which can be determined from the cutting mechanics. The proposed model is verified by the chatter stability charts. A good agreement was shown between the stability limits predicted by the theory and the critical width of cut determined by experiments. The static cutting coefficient dominates high speed chatter stability, while the dynamic cutting coefficient dominates low speed chatter stability.

Steady-State Integral Proportional Integral Controller for PI Motor Speed Controllers

  • Hoo, Choon Lih;Haris, Sallehuddin Mohamed;Chung, Edwin Chin Yau;Mohamed, Nik Abdullah Nik
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.177-189
    • /
    • 2015
  • The output of the controller is said to exceed the input limits of the plant being controlled when a control system operates in a non-linear region. This process is called the windup phenomenon. The windup phenomenon is not preferable in the control system because it leads to performance degradation, such as overshoot and system instability. Many anti-windup strategies involve switching, where the integral component differently operates between the linear and the non-linear states. The range of state for the non-overshoot performance is better illustrated by the boundary integral error plane than the proportional-integral (PI) plane in windup inspection. This study proposes a PI controller with a separate closed-loop integral controller and reference value set with respect to the input command and external torque. The PI controller is compared with existing conventional proportional integral, conditional integration, tracking back calculation, and integral state prediction schemes by using ScicosLab simulations. The controller is also experimentally verified on a direct current motor under no-load and loading conditions. The proposed controller shows a promising potential with its ability to eliminate overshoot with short settling time using the decoupling mode in both conditions.

Maximum Torque Control of IPMSM using ALM-FNN and MFC Controller (ALM-FNN 및 MFC 제어기를 이용한 IPMSM 최대토크 제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.26-28
    • /
    • 2009
  • This paper proposes maximum torque control of IPMSM drive using adaptive teaming mechanism-fuzzy neural network (ALM-FNN) controller, model reference adaptive fuzzy tonal(MFC) and artificial neural network(ANN). This control method is applicable over the entire speed range which considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using ALM-FNN, MFC and ANN controller. The proposed control algorithm is applied to IPMSM drive system controlled ALM-FNN, MFC and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper proposes the analysis results to verify the effectiveness of the ALM-FNN, MFC and ANN controller.

  • PDF

Pedestrians Trajectory Characteristic for Vehicle Configuration and Pedestrian Postures (차량형상과 충돌형태에 따른 보행자 거동 특성에 관한 연구)

  • Yoo Jangseok;Park Gyung-Jin;Chang Myungsoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.8-18
    • /
    • 2005
  • Pedestrians involved in traffic accidents manifest unique trajectory characteristics depending on the collision speed, vehicle configuration, and pedestrian postures. However, the existing analytical models for pedestrian movements do not fully include the rotational characteristics of the pedestrians because they assume a two dimensional parabolic trajectory. This faulty assumption in the development of these models limits their applicability and reliability This study investigated the pedestrians movement at collision by computer simulation. The simulations are carried out by using HADYMO, which is a special simulation software system for dynamic movement analysis. Vehicles and pedestrians are modeled and verified via real crash worthiness experiments. Simulations are performed for various collision speeds, vehicle configuration, and pedestrian postures. Since the simulation uses multi-body dynamics, It can express irregular phenomena of the bodies quite well. The results can be exploited for vehicle design and traffic accident reconstruction.

A Study on the Penetration Fracture Strength of Fragile Plates subjected to High Speed Impact (고속 충격을 받는 취성재 평판의 관통파괴 강도)

  • 김지훈;심재기;양인영
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.3-9
    • /
    • 1996
  • In this study, comparison of theoretical solutions with experimental results is examined through fracture conditions for the case of float glasses subjected static loading. The range of fracture generation limits and critical penetration energies are solved according to the impactor mass under the high velocity, and analytical method of fracture strength and penetration strength are presented. Also, fracture patterns are investigated according to impact velocities. The results obtained from this study are as follows ; 1) Radial cracks are generated from the loading point regardless of plate thickness in the case of the plate subjected to the static loading. In the case of high-speed impact, dimensions of ring cracks become to smaller and length of radial cracks becomes shorter with the rapidity of impact velocity. 2) Kinetic change volume of collision after/before is constant regardless of velocities over the range of critical penetration velocity. 3) Although the same impact energy is working, the critical penetration energy is increased with the shorter of impactor mass. 4) Although the same impact energy is working, the penetration fracture of lighter Impactor mass is generated more than that of heavier impactor mass, and the impulse of lighter impacter mass appear more than that of heavier impactor mass. Therefore, the penetration fracture in the case of greater impulse is generated earlier regardless of the of the dimensions of Impact loading.

  • PDF

Study on Low-Latency overcome of XMDR-DAI based Stock Trading system in Cloud (클라우드 환경에서 XMDR-DAI 기반 주식 체결 시스템의 저지연 극복에 관한 연구)

  • Kim, Keun-Hee;Moon, Seok-Jae;Yoon, Chang-Pyo;Lee, Dae-Sung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.350-353
    • /
    • 2014
  • The large scale of data and operating systems in the trading environment in the cloud. However, technology is not an easy trading system of cloud-based data interoperability. Partially meets the data transfer rate and also the timeliness of the best trading system on the difficulties. Thus various techniques have been introduced for improving the throughput and low latency minimization problem. But the reality is, and the limits of speed improvements like Socket Direct Protocol, Offload Engine with TCP/IP is the hardware, the introduction effect is also low. In this paper, the proposed trading of the cloud XMDR-DAI based stock system. The proposed Safe Proper Time Method for optimal transmission speed and reliability.

  • PDF