• Title/Summary/Keyword: speed limit model

Search Result 175, Processing Time 0.024 seconds

The Control of Flexible Beam using Nonlinear Compensator with Dual-Input Describing Function (쌍입력 기술함수를 갖는 비선형 보상기를 이용한 유연한 빔의 제어)

  • 권세현;이형기;최부귀
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.644-650
    • /
    • 1998
  • In this paper , a state space model for flexible beam is presented using the assumed-modes approach. The state space equation is derived for a flexible beam in which one end is connected to a motor and is driven by a torque equation and the other end is free. Many of the transfer function proposed thus far use the torque to the flexible beam as the input and the tip deflection of the flexible beam as the output. The Technique for the analysis and synthesis of the dual-input describing function(DIDF) is introduced here and the construction of a non-linear compensator, based on this technique, is proposed. This non-linear compensator, properly connected in the direct path of a closed-loop linear or non-linear control system. The above non-linear network is used to compensate linear and non-linear systems for instability, limit cycles, low speed of response and static accuracy. The effectiveness of the proposed scheme is demonstrated through computer simulation and experimental results.

  • PDF

Stability Analysis of Railway Vehicle Featuring MR Damper (MR댐퍼를 적용한 철도차량의 안정성 해석)

  • Ha, Sung-Hoon;Choi, Seung-Bok;You, Won-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.7
    • /
    • pp.732-740
    • /
    • 2008
  • This paper presents vibration control performances and stability evaluations of railway vehicle featuring controllable magnetorheological(MR) damper. The MR damper model is developed and then incorporated with the governing equations of motion of the railway vehicle which includes vehicle body, bogie and wheel-set. A cylindrical type of MR damper is devised and its damping force is evaluated by considering fluid viscosity and MR effect Design parameters are determined to achieve desired damping force level applicable to real railway vehicle. Subsequently, computer simulation of vibration control and stability analysis is performed using Matlab Simulink.

Modeling of GN type III with MDD for a thermoelectric solid subjected to a moving heat source

  • Ezzat, Magdy A.
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.393-403
    • /
    • 2020
  • We design the Green-Naghdi model type III (GN-III) with widespread thermoelasticity for a thermoelectric half space using a memory-dependent derivative rule (MDD). Laplace transformations and state-space techniques are used in order to find the general solution for any set of limit conditions. A basic question of heat shock charging half space and a traction-free surface was added to the formulation in the present situation of a traveling heat source with consistent heating speed and ramp-type heating. The Laplace reverse transformations are numerically recorded. There are called the impacts of several calculations of the figure of the value, heat source spead, MDD parameters, magnetic number and the parameters of the ramping period.

A Preliminary Study on Piezo-aeroelastic Energy Harvesting Using a Nonlinear Trailing-Edge Flap

  • Bae, Jae-Sung;Inman, Daniel J.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.407-417
    • /
    • 2015
  • Recently, piezo-aeroelastic energy harvesting has received greater attention. In the present study, a piezo-aeroelastic energy harvester using a nonlinear trailing-edge flap is proposed, and its nonlinear aeroelastic behaviors are investigated. The energy harvester is modeled using a piezo-aeroelastic model of a two-dimensional typical section airfoil with a trailing-edge flap (TEF). A piezo-aeroelastic analysis is carried out using RL and time-integration methods, and the results are verified with the experimental data. The linearizing method using a describing function is used for the frequency domain analysis of the nonlinear piezo-aeroelastic system. From the linear and nonlinear piezo-aeroelastic analysis, the limit cycle oscillation (LCO) characteristics of the proposed energy harvester with the nonlinear TEF are investigated in both the frequency and time domains. Finally, the authors discuss the air speed range for effective piezo-aeroelastic energy harvesting.

Estimation of Reinforced Roadbed Thickness based on Experimental Equation (노반재료의 소성침하 예측식을 이용한 강화노반 두께 산정)

  • Shin, Eun-Chul;Yang, Hee-Saeng;Choi, Chan-Yong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1747-1755
    • /
    • 2008
  • Design of the reinforced roadbed thickness is concerned with safe operation of trains at specified levels of speed, axle load and tonnage. There are two methods for evaluating it. One is using an experimental equation and the other is using elastic theory with considering axle load, material properties of subsoils and allowable elastic settlement. Multi-layered theory is used to determine reinforced roadbed thickness by RTRI. Although their reinforced roadbed thickness is designed with an objective of achieving a minimum standard 2.5mm of settlement on the subgrade surface, it is hardly applied to real design. Li(1994) has suggested the experimental model which design approach is to limit plastic strain and deformations for the design period. It is worth due to adopting soil equivalent number of repeated load application. Moreover, it has been a more advanced method than existing design methods because including resilient modulus of subsoil beneath track, soil deviator stress caused by train axle loads and MGT. In this paper, it is analyzed under domestic track conditions to estimate the reinforced roadbed thickness with different soil types.

  • PDF

Thin Sheet Metal Forming Process Analysis and Formability Evaluation using Electromagnetic Force (전자기력을 이용한 박판 성형 공정 해석 및 성형성 평가)

  • Seo, Y.H.;Heo, S.C.;Ku, T.W.;Song, W.J.;Kim, J.;Kang, B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.387-390
    • /
    • 2008
  • Electromagnetic forming (EMF) technology, which is one of the high speed forming methods, has been used for the forming process in various industry fields. Numerical approach by finite element simulation of the EMF process is presented in this study. The implicit code is used to obtain the numerical model of the time-varying currents that are discharged through the coil in order to obtain the transient magnetic forces. In addition, the body forces generated in the workpiece are used as the loading condition to analyze deformation of thin sheet metal workpiece using explicit code. Numerical approach for a dimpled shape by EMF process is carried out and the simulated results of the dimpled shape by EMF are reviewed in view of the deformed shape and formability evaluation.

  • PDF

Analysis of Speeding Characteristics Using Data from Red Light and Speed Enforcement Cameras (다기능단속카메라 수집 자료를 활용한 과속운전 특성 분석)

  • PARK, Jeong Soon;KIM, Joong Hyo;HYUN, Chul Seng;JOO, Doo Hwan
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.1
    • /
    • pp.29-42
    • /
    • 2016
  • Speeding is an important factor in traffic safety. Speed not only affects crash severity, but is also related to the possibility of crash occurrence. This study presents results from an analysis of 27,968 speed violation cases collected from 36 red light and speed enforcement cameras at signalized intersections in the city of Cheongju. Data included details of their violation history such as speeding tickets within a recent 3-year span and their demographic characteristics. The goal of this analysis is to understand the correlation between speed violations and various factors in terms of humans, vehicles and road environments. This study used descriptive statistics and Binary Logistics Regression(BLR) analysis with SPSS 20.0 software. The major results of this study are as follows. First, speed violations occurred at rural and suburban area. Second, about 25.6% of the violators committed to more than 20km/h over a speed limit. Third, the difference between speed violators and normal drivers clearly appeared in location of intersection(urban/rural/suburban area), gender and age. Finally, a statistically significant model(Hosmer and Lemeshow test: 11.586, p-value: 0.171) was developed through the BLR.

Flight Envelope Load Factor Limit Logic Design for Helicopter Fly-By-Wire Controller (전자식 조정장치 헬리콥터의 하중 비행영역 제한 로직 설계)

  • Choi, In-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.159-164
    • /
    • 2016
  • This paper reports the load factor logic design for a fly-by-wire helicopter flight envelope protection. As a helicopter is very complex system with a rotor, fuselage, engine, etc., there are many constraints on the flight region. Because of these constraints, pilots should consider them carefully and have a heavy workload, which causes controllability degradation. In this respect, automatic logic is needed to free the pilot from these considerations. As one of these logics, the flight envelope protection logic for the load factor of a FBW helicopter was designed. The flight to exceed the load factor is caused by an abrupt pitch cyclic stick change. In this scheme, the load factor limit logic was added between the pilot stick command block and pitch attitude command block. From the current load value, the available attitude range was calculated dynamically and simulated on the helicopter simulator model to verify the performance. A comparison of the simulation results at the hovering and forward speed region with and without applying the load limiting logic showed that the load factor limit was exceeded more than 20% when the logic was not applied, whereas with the load factor limit logic the load factor was within the limit. In conclusion, a dynamically allocated limitation logic to helicopter FBW controller was verified by simulation.

Rigid-Plastic FE Modeling of Frictional Contact Problems based on a Penalty Method (벌칙방법에 의한 마찰 접촉문제의 강소성 유한요소 모델링)

  • 장동환;황병복
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.34-42
    • /
    • 2003
  • This paper presents a rigid-plastic finite element method to handle the frictional contact problem between two deformable bodies experiencing large deformation. The variational formulation combined with incremental quasi-static model is employed for treating the contact boundary condition. The frictional behavior of the model obeys Coulomb's law of friction. The proposed contact algorithms are classified into two categories, one for searching contacting nodes and the other for calculating contact forces at the contact surface. A slave node and master contact segment are defined using the geometric condition of finite elements on the contact interface. The penalty parameter is used to limit the penetration between contacting bodies, and the finite elements are coupled with contact boundary elements.us gates and cavity thicknesses. Through this study we have observed that the jetting is related to the die swell of material. This means that the jotting is strongly affected by the elastic flow property rather than the viscous flow property in viscoelastic characteristics of molten polymer. Different resins have different elastic properties, and elastic flow behavior depends on the shear rate of flow, i.e. injection speed. Large die swell would eliminate jetting however, the retardation of die swell would stimulate jetting. In the point of mole design, reducing the thickness ratio of cavity to gate can reduce or eliminate jetting regardless of amount of elasticity of polymer melt.

Response of a steel column-footing connection subjected to vehicle impact

  • Kang, Hyungoo;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.125-136
    • /
    • 2017
  • This study investigated the performance of a steel column standing on a reinforced concrete footing when it was subjected to collision of an eight-ton single unit truck. Finite element analyses of the structure with different connection schemes were performed using the finite element model of the truck, and the results showed that the behavior of the column subjected to the automobile impact depended largely on the column-footing connection detail. Various reinforcement schemes were investigated to mitigate the damage caused by the car impact. The probability of the model reinforced with a certain scheme to reach a given limit state was obtained by fragility analysis, and the effects of the combined reinforcement methods were investigated based on the equivalent fragility scheme. The analysis results showed that the reinforcement schemes such as increase of the pedestal area, decrease of the pedestal height, and the steel plate jacketing of the pedestal were effective in reducing the damage. As the speed of the automobile increased the contribution of the increase in the number of the anchor bolts and the dowel bars became more important to prevent crushing of the pedestal.