• Title/Summary/Keyword: speed control

Search Result 9,499, Processing Time 0.039 seconds

Speed Control of an Induction Motor using Intelligent Speed Estimator (지능형 속도 추정기를 이용한 유도전동기 속도 제어)

  • Kim Lark-Kyo;Choi Sung-Dae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.7
    • /
    • pp.437-442
    • /
    • 2005
  • In order to realize the speed control of an induction motor, the information of the rotor speed is needed. So the speed sensor as an encoder or a pulse generator is used to obtain it. But the use of speed sensor occur the some problems in the control system of an induction motor. To solve the problems, the appropriate speed estimation algorithm is used instead of the speed sensor. Also there is the limitation to improve the speed control performance of an induction motor using the existing speed estimation algorithm. Therefore, in this paper, intelligent speed estimator using Fuzzy-Neural systems as adaptive laws in Model Reference Adaptive System is proposed so as to improve the existing estimation algorithm and ,using the rotor speed estimated by the Proposed estimator, the speed control of an induction motor without speed sensor is performed. The computer simulation and the experiment is executed to prove the performance of the speed control system usinu the proposed speed estimator.

PC-based low speed control of a servo motor using instantaneous speed detection (PC 기반의 순시속도 검출에 의한 서보 모터의 저속 제어)

  • 류재규;박정일;이석규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.377-382
    • /
    • 1993
  • The low speed control of a servo motor using instantaneous speed detection method is described. To estimate the instantaneous speed from the average speed, the speed estimator of the first or second order is used. We confirm that these estimatorsimprove the speed control performance of a servo system with experiments.

  • PDF

Speed control of induction motor for electric vehicles using PLL and fuzzy logic (PLL과 fuzzy논리를 이용한 전기자동차 구도용 유도전동기의 속도제어)

  • 양형렬;위석오;임영철;박종건
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.640-643
    • /
    • 1997
  • This paper describes speed controller of a induction motor for electric vehicles using PLL and Fuzzy logic. The proposed system is combined precise speed control of PLL and robust, fast speed control of Fuzzy logic. The motor speed is adaptively incremented or decremented toward the PLL locking range by the Fuzzy logic using information of sampled speed errors and then is maintained accurately by PLL. The results of experiment show excellence of proposed system and that the proposed system is appropriates to control the speed of induction motor for electric vehicles.

  • PDF

Simple Speed Control Algorithm for DC Motors

  • Nguyen, Ba-Hai;Ngo, Hai-Bac;Ryu, Jee-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.510-513
    • /
    • 2009
  • In this paper, a novel speed control algorithm of DC motors is presented. The key contribution here is a simple speed controller only with speed feedback and without an inner current control loop. This is possible by adjusting the reference speed based on a certain rule. Therefore, the proposed speed controller here becomes simpler while maintaining the control performance. Moreover, with the proposed controller, the system response can be tuned with less complexity. This proposed control method is investigated both mathematically and experimentally.

  • PDF

Speed Control of the Motor in Automatic Control Using the Thyristor (싸이리스터에 의한 전동기 속도의 자동제어에 관한 연구)

  • Min Ho Park
    • 전기의세계
    • /
    • v.19 no.2
    • /
    • pp.6-11
    • /
    • 1970
  • For the variable speed in automatic control, this paper describes, at first, performance equations of an induction motor which has the free rotating stator. This motor with rotating stator has a speed control factor itself by equivalent variable frequency in stator side. Secondly, an additional invertor source on the rotor slip ring serves the purpose of improving the speed control factor. The advantages decribed above permit to control the speed continuosly from zero to maximum allowable speed with low energy of thyristor a feed-back device may be used for speed stabilization under variable load.

  • PDF

Speed Controller Transition Method for I-F Operation and Sensorless Operation of Permanent Magnet Synchronous Motor (영구자석 동기 전동기의 I-F 구동과 센서리스 구동을 위한 속도 제어 절환 기법)

  • Kim, Dong-Uk;Kim, Sungmin
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.543-551
    • /
    • 2019
  • Permanent Magnet Synchronous Motors(PMSMs) have a wider range of applications due to their high output density and high efficiency. PMSMs are used not only in high-power density, high-performance motor-driven systems such as vehicle and robots, but also in systems where cost-cutting is very important, such as washing machines, air conditioners and refrigerators. To reduce costs, position sensorless control is required, which is generally difficult to be used under conditions of starting the motor. Thus, the I-F speed control that rotates the current vector at any speed in the starting procedure should be used at first, and then the sensorless speed control could be applied after PMSM rotates above a certain speed. Speed control performance in I-F speed control and sensorless speed control is very important. And more speed control performance should be maintained even in the transient in which the two control techniques are changed. In this paper, the speed controller transition method from I-F speed control to sensorless speed control of permanent magnet synchronous motor is proposed. Experiments were carried out on the washing machine drive system to verify the performance of the proposed technique.

A Sensorless control system of Reluctance Synchronous Motor with Direct Torque Control (직접 토크제어에 의한 리럭턴스 동기 전동기의 센서리스 제어시스템)

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik;Kim, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.161-164
    • /
    • 2001
  • This paper presents a digital speed sensorless control system for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consist of stator flux observer, rotor speed estimator, torque estimator two hysteresis band controllers, an optimal switching look-up table. IGBT voltage source inverter, and TMS320C31DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor speed is estimated by the observed stator flux-linkage space vector. The estimated rotor speed can be determinated by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. In order to prove the suggested speed sensorless control algorithm. There are some simulation and testing at actual experimental system. The developed digitally high- performance speed sensorless control system are shown a good speed control response characteristic results and high Performance features using 1.0Kw RSM.

  • PDF

Fuzzy Speed Controller Design of Permanent Magnet Synchronous Generators for Variable-Speed Wind Turbine Systems (가변속 풍력발전용 영구자석형 동기발전기의 퍼지 속도제어기 설계)

  • Yu, Dong-Young;Choi, Young-Sik;Choi, Han-Ho;Jung, Jin-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.2
    • /
    • pp.69-79
    • /
    • 2011
  • This paper proposes a new fuzzy speed control method based on Takagi-Sugeno fuzzy method of permanent magnet synchronous generators(PMSM) for variable-speed wind turbine systems. The proposed fuzzy speed controller consists of the control terms that compensate for the nonlinearity of PMSG and the control terms that stabilize the error dynamics. The conditions are derived for the existence of the proposed speed controller, and the gain matrices of the controller are given. The proposed control method can guarantee that the PMSG can effectively track the speed reference which is calculated through the MPPT control and can reduce the fluctuations of the generated power under even fast random wind conditions. To verify the performance of the proposed fuzzy speed controller, the simulation results are demonstrated.

Implementation of the BLDC Motor Speed Control System using VHDL and FPGA (VHDL과 FPGA를 이용한 BLDC Motor의 속도 제어 시스템 구현)

  • Park, Woon Ho;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.71-76
    • /
    • 2014
  • This paper presents the implementation for the BLDC motor speed control system using VHDL and FPGA. The BLDC motor is widely used in automation for its good robustness and easy controllability. In order to control the speed of the BLDC motor, the PI controller used for static RPM output of the BLDC motor to variations in load. In addition, by using the DA converter, we were able to monitor the BLDC motor reference speed and the current speed through real time. The motor speed command and the parameters of the PI speed controller were modified easily by the FPGA and the AD converter. Finally, in order to show the feasibility of the control algorithm the speed control characteristics of the motor was monitored using an oscilloscope and the DA converter. Further, the speed control system was designed in this paper has shown the applicability of the drive system of the factory automation.

PMSM Sensorless Operation for High Variable Speed Compressor (고속압축기 구동 PMSM을 위한 센서리스 운전)

  • 석줄기;이동춘;황준현
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.12
    • /
    • pp.676-681
    • /
    • 2002
  • This paper presents the implementation and experimental investigation of sensorless speed control for a variable-speed PMSM(Permanent Magnet Synchronous Motor) in super-high speed compressor operation. The proposed control scheme consists of two different sensorless algorithms to guarantee the reliable starting operation in low speed region and full torque characteristics using the vector control in high speed region. An automatic switching technique between two control modes is proposed to minimize the speed and torque pulsation during the switching instant of control mode. A testing system of 3.3㎾ PMSM has been built and 90% load test results at 7000r/min are presented to examine the feasibility of proposed sensorless control scheme.