• Title/Summary/Keyword: specular object

Search Result 31, Processing Time 0.028 seconds

Extracting roof edges of specular polyhedra (경면 다면체의 모서리 추출)

  • 박원식;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.379-382
    • /
    • 1997
  • This paper introduces a new vision technique for extracting roof edges of polyhedra having specularly reflecting surfaces. There have been many previous works on object recognition using edge information. But they can not be applied to specular objects since it is hard to acquire reliable camera images of specular objects. If there is a method which can extract the edges of specular objects, it is possible to apply edge-based recognition algorithms to specular objects. To acquire the reliable edge images of specular objects, scanned double pass retroreflection method is proposed, whose main physical characteristic is curvature-sensitive. This utility of the physical characteristic is motivated by the idea that roof edges can be characterized as local surfaces of high curvature. In this paper, the optical characteristics of double pass retroreflection are discussed and a series of simulation studies are performed to verify and analyze the sensor characteristics. The results from a series of simulations show the effectiveness of the proposed method.

  • PDF

Obtaining Shapes of Specular Objects Using Ring Illumination (링 조명에 의한 경면 반사 물체의 형상 인식)

  • Kim, J.H.;Kim, C.H.;Cho, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.4
    • /
    • pp.78-87
    • /
    • 1995
  • Specular reflection appears with metals, plastics, glasses and many other solid objects which are required to be inspected, assembled, moved, or processed automatically. Recongnizing such shiny objects with specular reflections is a hard problem for computer vision, since specular reflections appear, disappear, or change their shapes abruptly, due to tiny movements of the view. Traditionally, such specular reflections are discarded as annoying noise for recongnition purposes. In this paper a technique is represented for obtaining shapes of specular objects. The ring illumin- ation system employes a ring source which is positioned on the axis of the camera. The concept of the proposed method is that if specular objects are illuminated by the ring they show their own dis- tinctive specularity features in surface from which we can infer the shape of the object. A series of experiments are performed to evaluate the performance of this system.

  • PDF

Stylized Specular Reflections Using Projective Textures based on Principal Curvature Analysis (주곡률 해석 기반의 투영 텍스처를 이용한 스타일 반사 효과)

  • Lee, Hwan-Jik;Choi, Jung-Ju
    • Journal of the HCI Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.37-44
    • /
    • 2006
  • Specular reflections provide the visual feedback that describes the material type of an object, its local shape, and lighting environment. In photorealistic rendering, there have been a number of research available to render specular reflections effectively based on a local reflection model. In traditional cel animations and cartoons, specular reflections plays important role in representing artistic intentions for an object and its related environment reflections, so the shapes of highlights are quite stylistic. In this paper, we present a method to render and control stylized specular reflections using projective textures based on principal curvature analysis. Specifying a texture as a pattern of a highlight and projecting the texture on the specular region of a given 3D model, we can obtain a stylized representation of specular reflections. For a given polygonal model, a view point, and a light source, we first find the maximum specular intensity point, and then locate the texture projector along the line parallel to the normal vector and passing through the point. The orientation of the projector is determined by the principal directions at the point. Finally, the size of the projection frustum is determined by the principal curvatures corresponding to the principal directions. The proposed method can control the position, orientation, and size of the specular reflection efficiently by translating the projector along the principal directions, rotating the projector about the normal vector, and scaling the principal curvatures, respectively. The method is be applicable to real-time applications such as cartoon style 3D games. We implement the method by Microsoft DirectX 9.0c SDK and programmable vertex/pixel shaders on Nvidia GeForce FX 7800 graphics subsystems. According to our experimental results, we can render and control the stylized specular reflections for a 3D model of several ten thousands of triangles in real-time.

  • PDF

Sonar Map Construction for Autonomous Mobile Robots Using Data Association Filter (데이터 연관 필터를 이용한 자율이동로봇의 초음파지도 작성)

  • Lee Yu-Chul;Lim Jong-Hwan;Cho Dong-Woo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.9
    • /
    • pp.539-546
    • /
    • 2005
  • This paper describes a method of building the probability grid map for an autonomous mobile robot using the ultrasonic DAF(data association filter). The DAF, which evaluates the association of each data with the rest and removes the data affected by the specular reflection effect, can improve the reliability of the data for the Probability grid map. This method is based on the evaluation of possibility that the acquired data are all from the same object. Namely, the data from specular reflection have very few possibilities of detecting the same object, so that they are excluded from the data cluster during the process of the DAF. Therefore, the uncertain data corrupted by the specular reflection and/or multi-path effect, are not used to update the probability map, and hence building a good quality of a grid map is possible even in a specular environment. In order to verify the effectiveness of the DAF, it was applied to the Bayesian model and the orientation probability model which are the typical ones of a grid map. We demonstrate the experimental results using a real mobile robot in the real world.

A Study on the Influence of the Object's Reflectance on the Active Range Finder (물체의 반사성질이 능동형광센서에 미치는 영향에 관한 연구)

  • 이철원;나석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2944-2953
    • /
    • 1994
  • Active range finders using laser beam have been widely used for the factory automation and quality assurance, but they may be unreliable if the object' slope is steep or its surface is specular. The reliability of an active range finder was analyzed for the variation of the reflected laser beam intensity. First, the properties of the object's reflection were modeled by using the bidirectional reflectance-distribution function(BRDF), and then the variation of the laser beam brightness was formulated for the different configuratioin of the object and sensor. The experimental data of the laser beam reflection were obtained for two materials, mild steel and stainless steel. The parameters of the proposed model were obtained by fitting the data of the mild steel to the model and it was found that the results calculated from the proposed model were in good agreement with the experimental data.

Consideration of Multipath Effect in Sonar Map Construction for an Autonomous Mobile Robot (다중반사경로효과를 고려한 자율이동로봇의 초음파지도 형성)

  • 임종환;조동우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.106-112
    • /
    • 1993
  • A new model for the construction of a sonar map in a specular environment has been developed ad implemented. In a real world where most of the object surfaces are specular ones, a sonar sensor suffers from a multipath effect which results in a wrong interpretation of an objects's location. To reduce this effect and hence to construct a reliable map of a robot's surroundings, a probabilistic approach based on Bayesian reasoning is adopted to both evaluation of object orientations and estimation of an occupancy probability of a cell by an object. The usefulness of this approach is illustrated with the results produced by our mobile robot equipped with ultrasonic sensors.

  • PDF

Highlight Detection Using Photometric Stereo and Object Reconstruction Using Difference Image (측광입체시법을 이용한 하이라이트 검출과 농담 차이를 이용한 물체 복원)

  • Bae, Cheol-Min;Mun, Yeong-Sik
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.4
    • /
    • pp.1132-1140
    • /
    • 1997
  • In many vision tasks of the major obstacles is the specular highkight of smoth objects, which causes a misinterpretation of objects.This paper presents an dffcient algorithm for highight detection and object reconstruction, blsed on the theory of photometric stereo in which the location of highilight changes as the position of illumination source changes.Two images, referred to as base image and reference image.are sequentially taken with two different positionhs of the two images.The difference image is thresholded to detct the specular spike of the highlight.Then the specu-lar lobe around the specular spike is detected to reconstruct the object.The proposed algorithm can be applied to metals and dielectrics, regardlless of the surface chracteristics.This method can also be aplied to the case when the background is brighter than the object.

  • PDF

AN EMPHASIZED HIGHLIGHT MODEL OF METALLIC OBJECT ON CAVE SYSTEM IN CONSIDERATION OF CONTRAST AND PARALLAX

  • Watanabe, Yasuji;Makino, Mitsunori
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.644-648
    • /
    • 2009
  • Accurate rendering of a virtual scene in real time has been one of important issues for virtual reality (VR) technology. Specular reflection of light has been studied a long time, which is always seen on a metallic object and causes occasionally very strong brightness (highlight). Due to restriction of number of gradation of brightness (usually 256), maximum brightness and contrast ratio, the highlight is relatively weakly represented by displays and projectors. In addition, specular reflection will be take influence of binocular parallax and motion parallax, because it is light to reflect in a specific course. Therefore in this paper, an emphasized highlight model of a metallic object on the CAVE system is proposed. Decreasing brightness slightly on neighbor area of highlighted area, the proposed method increases contrast ratio between the highlighted area and neighbor area. Furthermore, using features of CAVE, the proposed method also represents glance (blink). When a metallic object moves, the method alternatively represents images with highlight and without highlight for both eyes. Since the difference of images for both eyes influences binocular parallax and motion parallax, a userfeels glance more realistically.

  • PDF

Three-Dimensional Shape Measurement of a Specular Object by LED Array Reflection (LED Array의 반사영상에 의한 경면체의 3차원 형상 측정)

  • Kim, Jee Hong
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.1
    • /
    • pp.41-46
    • /
    • 2016
  • An optical method to measure the three-dimensional (3D) shape of a surface with specular reflection is proposed. The proposed method is based on the analysis of the geometric path of the light from a point source, and the relative displacements of points in the reflection image. The 3D shape of a concave mirror is shown to be determined approximately via experiments, where the vision system consists of LED array illumination, a half-mirror, and an imaging sensor.

Suppression of Speckle in ultrasonic image by Phase Filtering (위상필터를 사용한 초음파 영사에서의 반점 제거)

  • Kim, D.;Greenleaf, J.F.;Oh, M.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1990 no.11
    • /
    • pp.5-10
    • /
    • 1990
  • The object detection capabilities of ultrasonic imaging systems are limited by the ability of the detection process to distinguish the resolved object signals from backscattered speckle noise. It has been shown that the phase component of the Fourier transform of the speckle noise is random. Based on this property. we propose a new algorithm for distinguishing between speckle and specular targets. The proposed algorithm is implemented by taking the Fourier transform of the received signal, low-pass filtering the phase, and taking the inverse Fourier transform of the filtered phase to enhance specular reflectors and reduce speckle in the image. Simulations and experiments using phantoms confirm the algorithm yielding significant reduction of speckle noise.

  • PDF