• Title/Summary/Keyword: spectrum gap

Search Result 212, Processing Time 0.025 seconds

Growth and photocurrent properties for the $AgInS_{2}$ epilayers by hot wall ep itaxy (Hot wall epitaxy 방법에 의한 $AgInS_{2}$ 박막의 성장과 광전류특성)

  • Hong, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.92-96
    • /
    • 2002
  • A silver indium sulfide $(AgInS_{2})$ epilayer was grown by the hot wall epitaxy method, which has not been reported in the literature. The grown $AgInS_{2}$ epilayer has found to be a chalcopyrite structure and evaluated to be high quality crystal. From the photocurrent measurement in the temperature range from 30 K to 300 K, the two peaks of A and B were only observed, whereas the three peaks of A, B, and C were seen in the PC spectrum of 10 K. These peaks are ascribed to the band-ta-band transition. The valence band splitting of $AgInS_{2}$ was investigated by means of the photocurrent measurement. The crystal field splitting, $\Delta_{cr}$, and the spin orbit splitting, $\Delta_{so.}$ have been obtained to be 0.150 eV and 0.009 eV at 10 K, respectively. And, the energy band gap at room temperature has been determined to be 1.868 eV. Also, the temperature dependence of the energy band gap, $E_{g}(T)$, was determined.

  • PDF

Growth and Photocurrent Properties for the AgInS2 Epilayers by Hot Wall Epitaxy (Hot wall epitaxy방법에 의한 AgInS2 박막의 성장과 광전류 특성)

  • Kim, H.S.;Hong, K.J.;Jeong, J.W.;Bang, J.J.;Kim, S.H.;Jeong, T.S.;Park, J.S.
    • Korean Journal of Materials Research
    • /
    • v.12 no.7
    • /
    • pp.587-590
    • /
    • 2002
  • A silver indium sulfide ($AgInS_2$) epilayer was grown by the hot wall epitaxy method, which has not been reported in the literature. The grown $AgInS_2$ epilayer has found to be a chalcopyrite structure and evaluated to be high quality crystal. From the photocurrent measurement in the temperature range from 30 K to 300 K, the two peaks of A and B were only observed, whereas the three peaks of A, B, and C were seen in the PC spectrum of 10 K. These peaks are ascribed to the band-to-band transition. The valence band splitting of $AgInS_2$ was investigated by means of the photocurrent measurement. The crystal field splitting, $\Delta_{cr}$ , and the spin orbit splitting, $\Delta_{so}$ , have been obtained to be 0.150 eV and 0.009 eV at 10 K, respectively. And, the energy band gap at room temperature has been determined to be 1.868 eV. Also, the temperature dependence of the energy band gap, $E_{g}$(T), was determined.d.

Growth and Characterization of a-Si :H and a-SiC:H Thin Films Grown by RF-PECVD

  • Kim, Y.T.;Suh, S.J.;Yoon, D.H.;Park, M.G.;Choi, W.S.;Kim, M.C.;Boo, J.-H.;Hong, B.;Jang, G.E.;Oh, M.H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.503-509
    • /
    • 2001
  • Thin films of hydrogenated amorphous silicon (a-Si : H) and hydrogenated amorphous silicon carbide (a-SiC:H) of different compositions were deposited on Si(100) wafer and glass by RF plasma-enhanced chemical vapor deposition (RF-PECVD). In the present work, we have investigated the effects of the RF power on the properties, such as optical band gap, transmittance and crystallinity. The Raman data show that the a-Si:H material consists of an amorphous and crystalline phase for the co-presence of two peaks centered at 480 and $520 cm^{-1}$ . The UV-VIS data suggested that the optical energy band gap ($E_{g}$ ) is not changed effectively with RF power and the obtained $E_{g}$(1.80eV) of the $\mu$c-Si:H thin film has almost the same value of a-Si:H thin film (1.75eV), indicating that the crystallity of hydrogenated amorphous silicon thin film can mainly not affected to their optical properties. However, the experimental results have shown that$ E_{g}$ of the a-SiC:H thin films changed little on the annealing temperature while $E_{g}$ increased with the RF power. The Raman spectrum of the a-SiC:H thin films annealed at high temperatures showed that graphitization of carbon clusters and microcrystalline silicon occurs.

  • PDF

Electron transport in core-shell type fullerene nanojunction

  • Sergeyev, Daulet;Duisenova, Ainur
    • Advances in nano research
    • /
    • v.12 no.1
    • /
    • pp.25-35
    • /
    • 2022
  • Within the framework of the density functional theory combined with the method of non-equilibrium Green's functions (DFT + NEGF), the features of electron transport in fullerene nanojunctions, which are «core-shell» nanoobjects made of a combination of fullerenes of different diameters C20, C80, C180, placed between gold electrodes (in a nanogap), are studied. Their transmission spectra, the density of state, current-voltage characteristics and differential conductivity are determined. It was shown that in the energy range of -0.45-0.45 eV in the transmission spectrum of the "Au-C180-Au" nanojunction appears a HOMO-LUMO gap with a width of 0.9 eV; when small-sized fullerenes C20, C80 are intercalation into the cavity C180 the gap disappears, and a series of resonant structures are observed on their spectra. It has been established that distinct Coulomb steps appear on the current-voltage characteristics of the "Au-C180-Au" nanojunction, but on the current-voltage characteristics "Au-C80@C180-Au", "Au-(C20@C80)@C180-Au" these step structures are blurred due to a decrease in Coulomb energy. An increase in the number of Coulomb features on the dI/dV spectra of core-shell fullerene nanojunctions was revealed in comparison with nanojunctions based on fullerene C60, which makes it possible to create high-speed single-electron devices on their basis. Models of single-electron transistors (SET) based on fullerene nanojunctions "Au-C180-Au", "Au-C80@C180-Au" and "Au-(C20@C80)@C180-Au" are considered. Their charge stability diagrams are analyzed and it is shown that SET based on C80@C180-, (C20@C80)@C180- nanojunctions is output from the Coulomb blockade mode with the lowest drain-to-source voltage.

Synthesis and Particle Size Control of δ-FeOOH Using H2O2 Oxidizing Agent (H2O2 산화제를 이용한 δ-FeOOH의 합성과 입자 크기 제어)

  • Seongmin Shin;Kyunghwan Kim;Jeongsoo Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.292-296
    • /
    • 2024
  • In this study, Iron (III) oxide-hydroxide (δ-FeOOH) was successfully synthesized using hydrogen peroxide (H2O2) as an oxidizing agent. The synthesis of δ-FeOOH was carried out by controlling the amount of H2O2, and pure δ-FeOOH was successfully synthesized in ranges from 0.2 mL to 0.6 mL of H2O2. The size of the synthesized δ-FeOOH particles was compared by controlling the amount of oxidant H2O2. The average particle size of the synthesized pure δ-FeOOH particles increased from 875.1 nm to 897.2 nm as the amount of H2O2 was increased. The optical properties of δ-FeOOH synthesized under these specific conditions were investigated. All δ-FeOOH showed a similar trend of increasing and decreasing light absorption from 800 nm to 400 nm, although there was a slight difference in the amount of light absorption, with the largest amount of light absorption at 410 nm. The band gap energy of δ-FeOOH through the Tauc plot method was about 2.1~2.2 eV when H2O2 was 0.2~1.4mL. With a sufficient small particle size, simple control of that particle size, and a small band gap energy enough to absorb light in the visible spectrum, δ-FeOOH could be useful in a variety of applications, including photoelectrochemistry and battery electrodes.

Evaluation of the Inelastic Seismic Response of Curved Bridges by Capacity Spectrum Method using Equivalent Damping (등가감쇠비를 이용한 역량스펙트럼법에 의한 곡선교의 비탄성지진응답 평가)

  • Joe, Yang-Hee;Cho, Sung-Gook;Ma, Jeong-Suck
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.17-26
    • /
    • 2009
  • The capacity spectrum method (CSM), which is known to be an approximate technique for assessing the seismic capacity of an existing structure, was originally proposed for simple building structures that could be modeled as single-degree-of-freedom (SDOF) systems. More recently, however, CSM has increasingly been adopted for assessing most bridge structures, as it has many practical advantages. Some studies on this topic are now being performed, and a few results of these have been presented as ground-breaking research. However, studies have until now been limited to symmetrical straight bridges only. This study evaluates the practical applicability of CSM to the evaluation of irregular curved bridges. For this purpose, the seismic capacities of 3-span prestressed concrete bridges with different subtended angles subjected to some recorded earthquakes are compared with a more refined approach based on nonlinear time history analysis. The results of the study show that when used for curved bridges, CSM induces higher inelastic displacement responses than the actual values, and that the gap between the two becomes larger as the subtended angle increases.

Photocurrent study on the splitting of the valence band and growth of $CdGa_2Se_4$ single crystal thin film by hot wall epitaxy (Hot Wall epitaxy(HWE)법에 의한 $CdGa_2Se_4$ 단결정 박막의 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Park, Chang-Sun;Hong, Kwang-Joon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.5
    • /
    • pp.179-186
    • /
    • 2007
  • Single crystal $CdGa_2Se_4$ layers were grown on a thoroughly etched semi-insulating GaAs(100) substrate at $420^{\circ}C$ with the hot wall epitaxy(HWE) system by evaporating the polycrystal source of $CdGa_2Se_4$ at $630^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction(DCXD). The carrier density and mobility of single crystal $CdGa_2Se_4$ thin films measured with Hall effect by van der Pauw method are $8.27{\times}10^{17}cm^{-3},\;345cm^2/V{\cdot}s$ at 293 K, respectively. The photocurrent and the absorption spectra of $CdGa_2Se_4/SI$(Semi-Insulated) GaAs(100) are measured ranging from 293 K to 10 K. The temperature dependence of the energy band gap of the $CdGa_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation $E_g(T)=2.6400eV-(7.721{\times}10^{-4}eV/K)T^2/(T+399K)$. Using the photocurrent spectra and the Hopfield quasicubic model, the crystal field energy(${\Delta}cr$) and the spin-orbit splitting energy(${\Delta}so$) far the valence band of the $CdGa_2Se_4$ have been estimated to be 106.5 meV and 418.9 meV at 10 K, respectively. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1^-},\;B_{1^-},\;and\;C_{11}-exciton$ peaks.

Linear and nonlinear optical properties of single component $Sb_2O_3$ system (단성분 $Sb_2O_3$유리의 선형 및 비선현 광학특성에 관한 연구)

  • Kim, Sae-Hoon;Chung, Yong-Sun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.514-520
    • /
    • 1997
  • A single component of $Sb_2O_3$ glass has been obtained by a rapid quenching method in vacuum. The linear refractive indices were measured as a function of wavelength from 500 nm to 1060 nm. The refractive index at $n_{3{\omega}}$/(633 nm) was as high as 2.00. The optical band gap was estimated as 3.38 eV from the optical absorption spectrum. The third-order nonlinear optical intensity was determined by the third harmonic generation (THG) method. The $\chi^{(3)}$value was as high as $5.68{\times}10^{-13}$esu, about 20 times larger than that of $SiO_2$ glass.

  • PDF

Design Methods of the Longitudinal Motion-Limiting Devices in Multi-Span Continuous Bridges (다경간연속교의 교축방향 이동제한장치의 설계방법)

  • 전귀현;이지훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.145-154
    • /
    • 1998
  • The motion-limiting devices can be used for reducing the maximum and residual displacements of the multi-span continuous bridges with inelastic elements such as isolation bearings and plastic hinges formed in piers. For the design of motion-limiting device, the nonlinear time history analysis is required. But the time history analysis is time consuming and very complex. This study suggests the simple design procedure of the motion-limiting devices using the equivalent elastic analysis method and the acceleration-displacement spectrum concept. The suggested design procedure can be used very effectively for determining the location and gap size of the motion-limiting devices.

  • PDF

Effect of Thermal Annealing and Growth of ZnO:Li Thin Film by Pulesd Laser Deposition (펄스 레이저 증착법에 의한 ZnO:Li 박막 성장과 열처리 효과)

  • Hong Kwangjoon
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.293-300
    • /
    • 2005
  • ZnO:Li epilayers were synthesized on sapphire substrates by the pulesd laser deposition (PLD) after the surface of the ZnO:Li sintered pellet was irradiated by the ArF (193 nm) excimer laser. The growth temperature was fixed at $400^{\circ}C$. The crystalline structure of epilayers was investigated by the photoluminescence (PL) and double crystal X-ray diffraction (DCXD). The carrier density and mobility of epilayers measured by van der Pauw-Hall method are $2.69\times10cm^{-3}$ and $52.137cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of epilayers obtained from the absorption spectra is well described by the Varshni's relation, $E_g(T)=3.5128eV{\cdot}(9.51\times10^{-4}eV/K)T^2/(T+280K)$. After the as-grown ZnO:Li epilayer was annealed in Zn atmospheres, oxygen and vaccum the origin of point defects of ZnO:Li has been investigated by PL at 10 K. The Peaks of native defects of $V_{zn},\;V_o,\;Zn_{int},\;and\;O_{int}$ showned on PL spectrum are classified as a donors or accepters type. We confirm that $ZnO:Li/Al_2O_3$ in vacuum do not form the native defects because ZnO:Li epilayers in vacuum existe in the form of stable bonds.