• Title/Summary/Keyword: spectrum and phylogenetic tree

Search Result 6, Processing Time 0.017 seconds

SPECTRAL METHOD FOR RECONSTRUCTING PHYLOGENETIC TREE

  • Paeng, Seong-Hun;Park, Chunjae
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.1005-1014
    • /
    • 2019
  • A new simple method is proposed for reconstructing phylogenetic trees, which we call the spectral method. The most common distance based method is the neighbor-joining method which is based on the minimum evolution principle. The spectral method shows similar performance to the neighbor-joining method for simulated data generated by seq-gen. For real data, the spectral method shows much better performance than the neighbor-joining method. Hence it can be a complementary method for reconstructing phylogenetic trees.

Characterization of Chryseobacterium aquaticum Strain PUPC1 Producing a Novel Antifungal Protease from Rice Rhizosphere Soil

  • Gandhi Pragash, M.;Narayanan, K. Badri;Naik, P. Ravindra;Sakthivel, N.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.1
    • /
    • pp.99-107
    • /
    • 2009
  • Strain PUPC1 produces an antifungal protease as well as plant growth promoting enzymes such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase and phosphatase. Morphological, cultural, and physiological characteristics as well as 16S rRNA gene-sequence-based phylogenetic analysis confirmed the taxonomic affiliation of PUPC1 as Chryseobacterium aquaticum. The optimum growth of PUPC1 was observed at pH 6.0 and $30^{\circ}C$, and maximum protease production was observed in medium B amended with 1% tryptone, 0.5% sucrose, and 0.005% $MnCl_2$. The protease was purified by ammonium sulfate precipitation, Sephadex G-75 gel filtration chromatography, and electroelution from preparative SDS-PAGE. The protease had a molecular mass of 18.5 kDa. The optimum pH and temperature stability of the protease were pH 5.0-10.0 and temperature $40-70^{\circ}C$. Chryseobacterium aquaticum PUPC1 and its protease showed a broad-spectrum antifungal activity against phytopathogenic fungi. Strain PUPC1 also exhibited plant growth promoting traits. The objective of the present investigation was to isolate a strain for agricultural application for plant growth promotion and biocontrol of fungal diseases.

Characterization of Melon necrotic spot virus Occurring on Watermelon in Korea

  • Kwak, Hae-Ryun;Kim, Jeong-Soo;Cho, Jeom-Deog;Lee, Joong-Hwan;Kim, Tae-sung;Kim, Mi-Kyeong;Choi, Hong-Soo
    • The Plant Pathology Journal
    • /
    • v.31 no.4
    • /
    • pp.379-387
    • /
    • 2015
  • Melon necrotic spot virus (MNSV) was recently identified on watermelon (Citrullus vulgaris) in Korea, displaying as large necrotic spots and vein necrosis on the leaves and stems. The average occurrence of MNSV on watermelon was found to be 30-65% in Hapcheon and Andong City, respectively. Four isolates of the virus (MNSV-HW, MNSV-AW, MNSV-YW, and MNSV-SW) obtained from watermelon plants in different areas were non-pathogenic on ten general indicator plants, including Chenopodium quinoa, while they infected systemically six varieties of Cucurbitaceae. The virus particles purified by 10-40% sucrose density gradient centrifugation had a typical ultraviolet spectrum, with a minimum at 245 nm and a maximum at 260 nm. The morphology of the virus was spherical with a diameter of 28-30 nm. Virus particles were observed scattered throughout the cytoplasm of watermelon cells, but no crystals were detected. An ELISA was conducted using antiserum against MNSV-HW; the optimum concentrations of IgG and conjugated IgG for the assay were $1{\mu}l/ml$ and a 1:8,000-1:10,000 dilutions, respectively. Antiserum against MNSV-HW could capture specifically both MNSV-MN from melon and MNSV-HW from watermelon by IC/RT-PCR, and they were effectively detected with the same specific primer to produce product of 1,172 bp. The dsRNA of MNSV-HW had the same profile (4.5, 1.8, and 1.6 kb) as that of MNSV-MN from melon. The nucleotide sequence of the coat protein of MNSV-HW gave a different phylogenetic tree, having 17.2% difference in nucleotide sequence compared with MNSV isolates from melon.

Combined Application Effects of Arbuscular Mycorrhizal Fungi and Biochar on the Rhizosphere Fungal Community of Allium fistulosum L.

  • Chunxiang Ji;Yingyue Li;Qingchen Xiao;Zishan Li;Boyan Wang;Xiaowan Geng;Keqing Lin;Qing Zhang;Yuan Jin;Yuqian Zhai;Xiaoyu Li;Jin Chen
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1013-1022
    • /
    • 2023
  • Arbuscular mycorrhizal fungi (AMF) are widespread soil endophytic fungi, forming mutualistic relationships with the vast majority of land plants. Biochar (BC) has been reported to improve soil fertility and promote plant growth. However, limited studies are available concerning the combined effects of AMF and BC on soil community structure and plant growth. In this work, a pot experiment was designed to investigate the effects of AMF and BC on the rhizosphere microbial community of Allium fistulosum L. Using Illumina high-throughput sequencing, we showed that inoculation of AMF and BC had a significant impact on soil microbial community composition, diversity, and versatility. Increases were observed in both plant growth (the plant height by 8.6%, shoot fresh weight by 12.1%) and root morphological traits (average diameter by 20.5%). The phylogenetic tree also showed differences in the fungal community composition in A. fistulosum. In addition, Linear discriminant analysis (LDA) effect size (LEfSe) analysis revealed that 16 biomarkers were detected in the control (CK) and AMF treatment, while only 3 were detected in the AMF + BC treatment. Molecular ecological network analysis showed that the AMF + BC treatment group had a more complex network of fungal communities, as evidenced by higher average connectivity. The functional composition spectrum showed significant differences in the functional distribution of soil microbial communities among different fungal genera. The structural equation model (SEM) confirmed that AMF could improve the microbial multifunctionality by regulating the rhizosphere fungal diversity and soil properties. Our findings provide new information on the effects of AMF and biochar on plants and soil microbial communities.

Lack of mixotrophy in three Karenia species and the prey spectrum of Karenia mikimotoi (Gymnodiniales, Dinophyceae)

  • Jin Hee Ok;Hae Jin Jeong;An Suk Lim;Hee Chang Kang;Ji Hyun You;Sang Ah Park;Se Hee Eom
    • ALGAE
    • /
    • v.38 no.1
    • /
    • pp.39-55
    • /
    • 2023
  • Exploring mixotrophy of dinoflagellate species is critical to understanding red-tide dynamics and dinoflagellate evolution. Some species in the dinoflagellate genus Karenia have caused harmful algal blooms. Among 10 Karenia species, the mixotrophic ability of only two species, Karenia mikimotoi and Karenia brevis, has been investigated. These species have been revealed to be mixotrophic; however, the mixotrophy of the other species should be explored. Moreover, although K. mikimotoi was previously known to be mixotrophic, only a few potential prey species have been tested. We explored the mixotrophic ability of Karenia bicuneiformis, Karenia papilionacea, and Karenia selliformis and the prey spectrum of K. mikimotoi by incubating them with 16 potential prey species, including a cyanobacterium, diatom, prymnesiophyte, prasinophyte, raphidophyte, cryptophytes, and dinoflagellates. Cells of K. bicuneiformis, K. papilionacea, and K. selliformis did not feed on any tested potential prey species, indicating a lack of mixotrophy. The present study newly discovered that K. mikimotoi was able to feed on the common cryptophyte Teleaulax amphioxeia. The phylogenetic tree based on the large subunit ribosomal DNA showed that the mixotrophic species K. mikimotoi and K. brevis belonged to the same clade, but K. bicuneiformis, K. papilionacea, and K. selliformis were divided into different clades. Therefore, the presence or lack of a mixotrophic ability in this genus may be partially related to genetic characterizations. The results of this study suggest that Karenia species are not all mixotrophic, varying from the results of previous studies.

Prospecting endophytic colonization in Waltheria indica for biosynthesis of silver nanoparticles and its antimicrobial activity

  • Nirmala, C.;Sridevi, M.
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.325-339
    • /
    • 2022
  • Endophytes ascertain a symbiotic relationship with plants as promoters of growth, defense mechanism etc. This study is a first report to screen the endophytic population in Waltheria indica, a tropical medicinal plant. 5 bacterial and 3 fungal strains in leaves, 3 bacterial and 1 yeast species in stems were differentiated morphologically and identified by biochemical and molecular methods. The phylogenetic tree of the isolated endophytes was constructed using MEGA X. Silver nanoparticles were biosynthesized from a rare endophytic bacterium Cupriavidus metallidurans isolated from the leaf of W. indica. The formation of silver nanoparticles was confirmed by UV-Visible spectrophotometer that evidenced a strong absorption band at 408.5 nm of UV-Visible range with crystalline nature and average particle size of 16.4 nm by Particle size analyzer. The Fourier Transform Infra-Red spectrum displayed the presence of various functional groups that stabilized the nanoparticles. X-ray diffraction peaks were conferred to face centered cubic structure. Transmission Electron Microscope and Scanning Electron Microscope revealed the spherical-shaped, polycrystalline nature with the presence of elemental silver analyzed by Energy Dispersive of X-Ray spectrum. Selected area electron diffraction also confirmed the orientation of AgNPs at 111, 200, 220, 311 planes similar to X-ray diffraction analysis. The synthesized nanoparticles are evaluated for antimicrobial activity against 7 bacterial and 3 fungal pathogens. A good zone of inhibition was observed against pathogenic bacteria than fungal pathogens. Thus the study could hold a key aspect in drug discovery research and other pharmacological conducts of human clinical conditions.