• Title/Summary/Keyword: spectroscopic technique

Search Result 166, Processing Time 0.028 seconds

Growth and Optical Properties of PbSnSe Epilayers Grown on BaF2(111) (PbSnSe 단결정 박막의 성장과 광학적 특성)

  • Lee, Il-Hoon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.1
    • /
    • pp.35-41
    • /
    • 2004
  • This study investigated the crystal growth, crystalline structure and the basic optical properties of $PbSnSe/BaF_2$ epilayers. The PbSnSe epilayer was grown on $BaF_2$(111) insulating substrates using a hot wall epitaxy (HWE) technique. It was found from the analysis of X-ray diffraction patterns that $PbSnSe/BaF_2$ epilayer was grown single crystal with a rock-salt structure oriented along [111] the growth direction. Using Rutherford back scattering, the atomic ratios of the PbSnSe was found to be proper stoichiometric. The best values for the full width at half maximum (FWHM) of the DCXRD was 162 arcsec for PbSnSe epilayer. The epilayer-thickness dependence of the FWHM of the DCXRD shows that the quality of the $PbSnSe/BaF_2$ is as expected. The dielectric function ${\varepsilon}(E)$ of a semiconductor is closely related to its electronic energy band structure and such relation can be drawn from features around the critical points(CPs) in the optical spectra. The real and imaginary parts(${\varepsilon}1$ and ${\varepsilon}2$) of the dielectric function ${\varepsilon}$ of PbSe were measured, and the observed spectra reveal distinct structures at energies of the E1, E2 and E3 CPs. These data are analyzed using a theoretical model known as the model dielectric function (MDF). The optical constants related to dielectric function such as the complex refractive index ($n^*=n+ik$), absorption coefficient (${\alpha}$) and normal-incidence reflectivity (R) are also presented for $PbSnSe/BaF_2$.

  • PDF

Effect of Lidocaine-HCl on Microviscosity of Phosphatidylcholine Model Membrane

  • Chung, In-Kyo;Kim, Inn-Se;Choi, Chang-Hwa;Cho, Goon-Jae;Kim, Jin-Bom;Son, Woo-Sung;Jang, Hye-Ock;Yun, Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.3
    • /
    • pp.243-251
    • /
    • 2000
  • In order to provide a basis for studying the molecular mechanism of pharmacological action of local anesthetics and to develop a fluorescence spectroscopic method which can detect the microviscosity of native and model membranes using intramolecular excimerization of 1,3-di(l-pyrenyl)propane (Py-3-Py), we examined the effect of lidocaine HCl on the microviscosity of model membranes of phosphatidylcholine fraction extracted from synaptosomal plasma membrane vesicles (SPMVPC). The excimer to monomer fluorescence intensity ratio (I'/I) of Py-3-Py in liquid paraffin was a simple linear function of $T/{\eta}.$ Based on this calibration curve, the microviscosity values of the direct probe environment in SPMVPC model membranes ranged from $234.97{\pm}48.85$ cP at $4^{\circ}C$ to %19.21{\pm}1.11$ cP at $45^{\circ}C.$ At $37^{\circ}C,$ a value of $27.25{\pm}0.44$ cP was obtained. The lidocaine HCl decreased the microviscosity of SPMVPC model membranes in a concentration-dependent manner, with a significant decrease in microviscosity value by injecting the local anesthetic even at the concentration of 0.5 mM. These results indicate that the direct environment of Py-3-Py in the SPMVPC model membranes is significantly fluidized by the lidocaine HCl. Also, the present study explicitly shows that an interaction between local anesthetics and membrane lipids is of importance in the molecular mechanism of pharmacological action of lidocaine HCl.

  • PDF

Evaluation of Beef Freshness Using Visible-near Infrared Reflectance Spectra (가시광선-근적외선 반사스펙트럼을 이용한 쇠고기의 신선도 평가)

  • Choi, Chang-Hyun;Kim, Jong-Hun;Kim, Yong-Joo
    • Food Science of Animal Resources
    • /
    • v.31 no.1
    • /
    • pp.115-121
    • /
    • 2011
  • The objective of this study was to develop models to predict freshness factors (total viable counts (TVC), pH, volatile basic nitrogen (VBN), trimethylamine (TMA), and thiobarbituric acid (TBA) values) and the storage period in beef using a visible and near-infrared (NIR) spectroscopic technique. A total of 216 beef spectra were collected during the storage period from 0 to 14 d at a $10^{\circ}C$ storage. A spectrophotometer was used to measure reflectance spectra from beef samples, and beef freshness spectra were divided into a calibration set and a validation set. Multi-linear regression (MLR) models using the stepwise method were developed to predict the factors. The MLR results showed that beef freshness had a good correlation between the predicted and measured factors using the selected wavelength. The correlation of determination ($r^2$), standard error of prediction (SEP), and ratio of standard deviation to SEP (RPD) of the prediction set for TVC was 0.74, 0.64, and 2.75 Log CFU/$cm^2$, respectively. The $r^2$, SEP, and RPD values for pH were 0.43, 0.10, and 1.10; those for VBN were 0.73, 1.45, and 2.00 mg%; those for TMA were 0.70, 0.19, and 2.58 mg%; those for TBA values were 0.73, 0.13, and 2.77 mg MA/kg; and those for storage period were 0.77, 1.94, and 2.53 d, respectively. The results indicate that visible and NIR spectroscopy can predict beef freshness during storage.

Determination of Barley Grain Components at Different Maturing Stages by Near Infrared Reflectance Spectroscopic Analysis (근적외선분광분석법에 의한 등숙시기별 보리종실의 성분측정)

  • Kim, Byung-Joo;Park, Eui-Ho;Suh, Hyung-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.1
    • /
    • pp.13-19
    • /
    • 1996
  • This study was conducted to establish the rapid determination method for major components of maturing covered barley grains, and to improve the efficiency of selection in barley breeding. Near Infrared Reflectance Spectroscopy (NIRS) is an established, economical and nondestructive technique applied widely to the food and feed industry. 34 barley lines were sampled at 5 day-interval from 25 to 35 days after heading. A standard regression analysis for the data obtained by analytical laboratory methods and NIRS method was carried out to get a useful calibration equation. The simple significant correlation between these two methods at 25 days after heading was recognized in starch and $\beta$-glucan contents. At 30 days after heading the data obtained by two methods showed significant correlation in starch, $\beta$-glucan and protein contents. Analyzed data and that from NIRS method at 35 days after heading was significantly correlated in starch and protein contents. It was concluded that the applicability of NIRS method for the components analysis in maturing barley grains was different depending on maturing stages and components.

  • PDF

Spectroscopic Characterization of 400℃ Annealed ZnxCd1-xS Thin Films (400℃ 열처리한 삼원화합물 ZnxCd1-xS 박막의 분광학적 특성 연구)

  • Kang, Kwang-Yong;Lee, Seung-Hwan;Lee, Nam-Kwon;Lee, Jeong-Ju;Yu, Yun-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.1
    • /
    • pp.101-112
    • /
    • 2015
  • II~VI compound semiconductors, $Zn_xCd_{1-x}S$ thin films have been synthesized onto indium-tin-oxide(ITO) coated glass substrates using thermal evaporation technique. The composition ratio x($0{\leq}x{\leq}1$) was varied to fabricate different kinds of $Zn_xCd_{1-x}S$ thin films including CdS(x=0) and ZnS(x=1) thin films. Then, the deposited thin films were thermally annealed at $400^{\circ}C$ to enhance their crystallinity. The chemical composition and electronic structure of films were investigated by using X-ray photoelectron spectroscopy(XPS). The optical energy gaps of the samples were determined by ultra violet-visible-near infrared(UV-Vis-NIR) spectroscopy and were found to vary in the range of 2.44 to 3.98 eV when x changes from 0 to 1. Finally, we measured the THz characteristics of the $Zn_xCd_{1-x}S$ thin films using THz-TDS(time domain spectroscopy) system to identify the capability for electronic and optical devices in THz region.

Feasibility of near-infrared spectroscopic observation for traditional fermented soybean production (전통 메주 제조과정에 있어서 근적외 모니터링 가능성 조사)

  • Jeon, Jae Hwan;Lee, Seon Mi;Cho, Rae Kwang
    • Food Science and Preservation
    • /
    • v.24 no.1
    • /
    • pp.145-152
    • /
    • 2017
  • In this study, near infrared (NIR) spectroscopy known as a non-destructive analysis technique was applied to investigate peptide cleavage and consequent release of amino acids in soybean lumps as affected by its moisture content and incubation time during fermentation at 25 for 3 weeks. The NIR spectra of the soybean lump semi-dried and soaked in saline water showed that absorption intensity around 1,400 nm originating from hydrogen bonds of water decreased and absorption band shifted to 1,430 nm as moisture content decreased during incubation at 25 for 3 weeks. In addition, absorption around 2,050 nm which was assigned to amino groups increased as incubation time increased. NIR spectra data from 1,000 to 2,250 nm showed higher accuracy in the discriminant analysis between outside and inside parts of fermented soybean lumps than visible spectra result. NIR spectroscopy for the amino acid and moisture contents in traditional fermented soybean lumps showed relatively good accuracy with the multiple correlation coefficient ($R^2$) of 0.91 and 0.81, respectively, and root mean square error of cross validation (RMSECv) of 0.23 and 0.83%, respectively, in partial least square regression (PLSR). These results indicate that NIR spectral observations could be applicable to control the fermentation process for preparation of soybean products.

Neuroprotective effects of phenolic compounds isolated from Spiraea prunifolia var. simpliciflora (조팝나무(Spiraea prunifolia var. simpliciflora)로부터 분리한 페놀 화합물의 신경세포 보호효과)

  • Oh, Seon Min;Choi, Doo Jin;Kim, Hyoung-Geun;Lee, Jae Won;Lee, Young-Seob;Lee, Jeong-Hoon;Lee, Seung-Eun;Kim, Geum-Soog;Baek, Nam-In;Lee, Dae Young
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.4
    • /
    • pp.397-403
    • /
    • 2018
  • The leaves of Spiraea prunifolia were extracted with 80% aqueous MeOH and the concentrates were partitioned into EtOAc, n-BuOH, and $H_2O$ fractions. The repeated $SiO_2$ or ODS column, and medium pressure liquid chromatographies for the n-BuOH fraction led to isolation of two phenolic glucosides. The chemical structures of these compounds were determined as isosalicin (1) and crenatin (2) based on spectroscopic analyses including Nuclear magnetic resonance and MS. Extracts were analyzed using UPLC-MS/MS providing a short analysis time within 5 min using MRM technique. The concentration of crenatin was higher as 9.53 mg/g and isosalicin was lower as 0.65 mg/g. Neuroprotective effects of these compounds against hydrogen peroxide ($H_2O_2$)-induced neurotoxicity were evaluated. The results showed that exposure to $H_2O_2$ induced morphological changes, cell death and neurotoxicity in SK-N-MC cells. However, pretreatment with crenatin resulted in inhibition of morphological change, reduction of loss of cell viability and attenuation of neuronal damage. These results suggested that neuroprotective effect of crenatin isolated from S. prunifolia can be a good candidate for the development of health beneficial foods which can ameliorate the degenerative neuronal disease caused by oxidative stress.

Detection of Titanium bearing Myeonsan Formation in the Joseon Supergroup based on Spectral Analysis and Machine Learning Techniques (분광분석과 기계학습기법을 활용한 조선누층군 타이타늄 함유 면산층 탐지)

  • Park, Chanhyeok;Yu, Jaehyung;Oh, Min-Kyu;Lee, Gilljae;Lee, Giyeon
    • Economic and Environmental Geology
    • /
    • v.55 no.2
    • /
    • pp.197-207
    • /
    • 2022
  • This study investigated spectroscopic exploration of Myeonsan formation, the titanium(Ti) ore hostrock, in Joseon supergroup based on machine learning technique. The mineral composition, Ti concentration, spectral characteristics of Myeonsan and non-Myeonsan formation of Joseon supergroup were analyzed. The Myeonsan formation contains relatively larger quantity of opaque minerals along with quartz and clay minerals. The PXRF analysis revealed that the Ti concentration of Myeosan formation is at least 10 times larger than the other formations with bi-modal distribution. The bi-modal concentration is caused by high Ti concentrated sandy layer and relatively lower Ti concentrated muddy layer. The spectral characteristics of Myeonsan formation is manifested by Fe oxides at near infrared and clay minerals at shortwave infrared bands. The Ti exploration is expected to be more effective on detection of hostrock rather than Ti ore because ilmenite does not have characteristic spectral features. The random-forest machine learning classification detected the Myeonsan fomation at 85% accuracy with overall accuracy of 97%, where spectral features of iron oxides and clay minerals played an important role. It indicates that spectral analysis can detect the Ti host rock effectively, and can contribute for UAV based remote sensing for Ti exploration.

Spatial Replicability Assessment of Land Cover Classification Using Unmanned Aerial Vehicle and Artificial Intelligence in Urban Area (무인항공기 및 인공지능을 활용한 도시지역 토지피복 분류 기법의 공간적 재현성 평가)

  • Geon-Ung, PARK;Bong-Geun, SONG;Kyung-Hun, PARK;Hung-Kyu, LEE
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.63-80
    • /
    • 2022
  • As a technology to analyze and predict an issue has been developed by constructing real space into virtual space, it is becoming more important to acquire precise spatial information in complex cities. In this study, images were acquired using an unmanned aerial vehicle for urban area with complex landscapes, and land cover classification was performed object-based image analysis and semantic segmentation techniques, which were image classification technique suitable for high-resolution imagery. In addition, based on the imagery collected at the same time, the replicability of land cover classification of each artificial intelligence (AI) model was examined for areas that AI model did not learn. When the AI models are trained on the training site, the land cover classification accuracy is analyzed to be 89.3% for OBIA-RF, 85.0% for OBIA-DNN, and 95.3% for U-Net. When the AI models are applied to the replicability assessment site to evaluate replicability, the accuracy of OBIA-RF decreased by 7%, OBIA-DNN by 2.1% and U-Net by 2.3%. It is found that U-Net, which considers both morphological and spectroscopic characteristics, performs well in land cover classification accuracy and replicability evaluation. As precise spatial information becomes important, the results of this study are expected to contribute to urban environment research as a basic data generation method.

NIRS Analysis of Liquid and Dry Ewe Milk

  • Nunez-Sanchez, Nieves;Varo, Garrido;Serradilla-Manrique, Juan M.;Ares-Cea, Jose L.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1251-1251
    • /
    • 2001
  • The routine analysis of milk chemical components is of major importance both for the management of animals in dairy farms and for quality control in dairy industries. NIRS technology is an analytical technique which greatly simplifies this routine. One of the most critical aspects in NIRS analysis of milk is sample preparation and analysis modes which should be fast and straightforward. An important difficulty when obtaining NIR spectra of milk is the high water content (80 to 90%) of this product, since water absorbs most of the infrared radiation, and, therefore, limits the accuracy of calibrating for other constituents. To avoid this problem, the DESIR system was set up. Other ways of radiation-sample interaction adapted for liquids or semi-liquids exist, which are practically instantaneous and with limited or null necessity of sample preparation: Transmission and Folded Transmission or Transflectance. The objective of the present work is to compare the precision and accuracy of milk calibration equations in two analysis modes: Reflectance (dry milk) and Folded Transmission (liquid milk). A FOSS-NIR Systems 6500 I spectrophotometer (400-2500 nm) provided with a spinning module was used. Two NIR spectroscopic methods for milk analysis were compared: a) folded transmission: liquid milk samples in a 0.1 pathlength sample cell (ref. IH-0345) and b) reflectance: dried milk samples in glass fibre filters placed in a standard ring cell. A set of 101 milk samples was used to develop the calibration equations, for the two NIR analysis modes, to predict casein, protein, fat and dry matter contents, and 48 milk samples to predict Somatic Cell Count (SCC). The calibrations obtained for protein, fat and dry matter have an excellent quantitative prediction power, since they present $r^2$ values higher than 0.9. The $r^2$ values are slightly lower for casein and SCC (0.88 and 0.89 respectively), but they still are sufficiently high. The accuracy of casein, protein and SCC equations is not affected by the analysis modes, since their ETVC values are very similar in reflectance and folded transmission (0.19% vs 0.21%; 0.16% vs 0.19% and 55.57% vs 53.11% respectively), Lower SECV values were obtained for the prediction of fat and dry matter with the folded transmission equations (0.14% and 0.25% respectively) compared to the results with the reflectance ones (0.43% and 0.34% respectively). In terms of accuracy and speed of analytical response, NIRS analysis of liquid milk is recommended (folded transmission), since the drying procedure takes 24 hours. However, both analysis modes offer satisfactory results.

  • PDF