• Title/Summary/Keyword: spectroscopic observation

Search Result 111, Processing Time 0.032 seconds

Spectroscopic observation of the massive high-z (z=1.48) galaxy cluster SPT-CL J2040-4451 using Gemini Multi-Object Spectrographs

  • Kim, Jinhyub;Jee, Myungkook J.;Kim, Seojin F.;Ko, Jongwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.74.2-74.2
    • /
    • 2019
  • Mass measurement of high-redshift galaxy clusters with high accuracy is important in constraining cosmological parameters. Extremely massive clusters at high redshift may impose a serious tension with the current ΛCDM paradigm. SPT-CL J2040-4451 at z=1.48 is considered one such case given its redshift and mass estimate inferred from the SZ data. The system has also been confirmed to be indeed massive from a recent weak-lensing (WL) analysis. Comparison of the WL mass with the spectroscopic result may provide invaluable information on the dynamical stage of the system. However, the existing spectroscopic coverage of the cluster is extremely poor; only 6 blue star-forming galaxies have been found within the virial radius, which results in highly inflated and biased velocity dispersion. In this work, we present a spectroscopic analysis of the member candidates using Gemini Multi-Object Spectrographs (GMOS) observation in Gemini South. The observation was designed to find early-type member galaxies within the virial radius and to obtain reliable velocity dispersion. We explain our selection scheme and preliminary results of the spectra. We also compare the dynamical mass estimate inferred from the velocity dispersion with the WL mass.

  • PDF

Establishment of Remote Meteor Spectroscopic Observation System and Observation Case Study (원격 유성 분광 관측 시스템 구축과 관측 사례 연구)

  • Choi, Dong-Yeol
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.1-22
    • /
    • 2022
  • We provide a detailed description of the installation and operation of a remote spectroscopic meteor observation system at Unjangsan optical astronomy observatory. Three light-sensitive charge-coupled device cameras were installed, and two cameras had a diffraction grating attached to the front of the lens. Station employ sensitive "Watec-902H2" cameras in combination with f/1.2 lenses were installed in November 2019. Diffraction gratings for spectral observations were used at 500 l/mm. Observations were conducted from November 2019 to June 2020. We employed the SonotaCo UFO software suite for meteor detection. Subsequently, meteor spectra were analyzed using field-tested RSpec software. To analyze the observation images, astronomical calibration and photometric calibration were performed, and the chemical elements of the meteor were determined. The study results are presented along with the system setup installation and operation experience. Brief information regarding the origin of the meteor was also provided based on the results.

Preparation of Carbosilane Dendrimers Based on Siloxane Tetramer: Silane Arborols $(VII)^1$

  • 김정균;안경미
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.2
    • /
    • pp.164-170
    • /
    • 1997
  • Via hydrosilation-alkenylation approach using hydrosilanes (HSiMeCl2 and HSiCl3) and allylmagnesium bromide with siloxane tetramer (MeCH2=CHSiO)4 as core molecule, noble carbosilane dendrimers with 12, 24, 48 and 96 allylic end groups have been prepared. The reaction path of the repetitive alkenylation and hydrosilation was monitored by means of NMR spectroscopic measurements. Every step for the formation of dendrimer provided almost quantitative yields as pure dendrimers. Based on the observation of UV spectroscopic measurements of Gn (n=1-4) molecules containing allylic end groups, the maximal molal absorption coefficients (εmax) at λmax and the number of double bonds proved an exponentially increased correlation.

Comparison of Coronal Electron Density Distributions from MLSO/MK4 and SOHO/UVCS

  • Lee, Jae-Ok;Lee, Kyung-Sun;Lee, Jin-Yi;Jang, Soojeong;Kim, Rok-Soon;Cho, Kyung-Suk;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.85.2-85.2
    • /
    • 2017
  • The coronal electron density is a fundamental and important physical quantity in solar physics for estimating coronal magnetic fields and analyzing solar radio bursts. To check a validation of coronal electron density distributions (CEDDs) from polarized brightness (pB) measurements with Van de Hulst inversions, we compare CEDDs derived from a polarized brightness (pB) observation [MLSO/MK4 coronameter] and one spectroscopic observation [SOHO/UVCS]. For this, we consider data observed in 2005 with the following conditions: (1) the observation time differences from each other are less than 1 minutes; and (2) O VI doublet (O VI $1031.9{\AA}$ and $1037.6{\AA}$) is well identified. In the pB observation, the CEDDs can be estimated by using Van de Hulst inversion methods. In the spectroscopic observation, we use the ratio of radiative and collisional components of the O VI doublet to estimate the CEDDs. We find that the CEDDs obtained from pB measurements are higher than those based on UVCS observations at the heights between 1.6 and 1.8 Rs (${\times}1.9$ for coronal streamer, 1.2 ~ 1.8 for background corona, and 1.5 for coronal hole), while they are lower than those based on UVCS at the heights between 1.9 and 2.6 Rs (${\times}0.1{\sim}0.6$ for coronal streamer, 0.5 ~ 0.7 for background corona, and 0.6 for coronal hole). The CEDDs of coronal streamers are higher than those of background corona at the between 1.6 and 2.0 Rs: ${\times}1.2{\sim}2.4$ for MK4 and 1.5 ~ 1.9 for UVCS.

  • PDF

Integral Field Spectroscopic Data Reduction Method for High Resolution Infrared Observation

  • Lee, Sung-Ho;Pak, Soo-Jong;Choi, Min-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.309-318
    • /
    • 2010
  • We introduce a technical approach for reducing three-dimensional infrared (IR) spectroscopic data generated by integral field spectroscopy or slit-scanning observations. The first part of data reduction using IRAF presents a guideline for processing spectral images from long-slit IR spectroscopy. Multichannel image reconstruction, Image Analysis and Display (MIRIAD) is used in the later part to construct and analyze the data cubes which contain spatial and kinematic information of the objects. This technic has been applied to a sample data set of diffuse 2.1218 ${\mu}m$ $H_2$ 1-0 S(1) emission features observed by slit-scanning around Sgr A East in the Galactic center. Details of image processing for the high-dispersion infrared data are described to suggest a sequence of contamination cleaning and distortion correction. Practical solutions for handling data cubes are presented for survey observations with various configurations of slit positioning.

Observation of the Bright Spectroscopic Binary Systems with DOAO/eShels Spectrograph

  • Shim, Hyunjin;Lee, Dongseob;Jeong, Yoonji;Kang, Wonseok;Kim, Taewoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.51.1-51.1
    • /
    • 2018
  • Based on the DOAO/eShels observations, we have derived radial velocity curves of the three Algol-type spectroscopic binary systems : Algol, ${\beta}$ Aur, and ${\varepsilon}$ Per. The radial velocity amplitudes of the primary and the secondary (K1 and K2) were consistent within a few % of the values from the previous studies. Mass ratios between the two stars that constitutes each system ranges ~1 to ~10. In addition to the orbital elements derived, we discuss about the spectroscopic ability of the DOAO/eShels instrument.

  • PDF

Study of Stray-light Analysis and Suppression Methods for the Spectroscopic System of a Solar-radiation Observer Instrument

  • Zheng, Ru;Liu, Bo;Wang, Lingyun;Gao, Yue;Li, Guangxi;Li, Changyu
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.220-228
    • /
    • 2021
  • To improve the measurement accuracy of a solar-radiation observer instrument, aiming at the problem of multiorder-stray-light interference caused by the diffraction of the flat-field concave grating in the spectroscopic system, straylight suppression methods for different forms of optical traps are studied. According to the grating surface-scattering distribution-function model, the bidirectional scattering distribution function (BSDF) of a dust-polluted surface and the flat-field concave grating's transition area of the spectroscopic system is calculated, and a Lyot stop with blade baffle is designed to suppress this kind of stray light. For diffraction multiorder stray light, based on the theory of light-energy transmission, a design for precise positioning of the trench optical trap is proposed. The superiority of the method is verified through simulation and actual measurement. The simulation results show that in a spectroscopic system approximately 160 mm × 140 mm × 80 mm in size, the energy of the stray light is reduced by one order of magnitude by means of the trench optical trap and Lyot stop, and the number of beams is reduced from 5664 to 1040. The actual measurements show that the stray-light-suppression efficiency is about 69.4%, which is effective reduction of the amount of stray light.

HIGH RESOLUTION SPECTROSCOPIC STUDY OF SYMBIOTIC STAR AG DRACONIS

  • KIM, SOO HYUN;YOON, TAE SEOG;OH, HYUNG-IL
    • Publications of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.13-31
    • /
    • 2022
  • We observed the symbiotic star AG Dra for a total of 61 nights between April 2004 and December 2021 using the 1.8-m telescope and the high-resolution Echelle spectrograph BOES at the Bohyunsan Optical Astronomy Observatory and obtained 355 frames of spectroscopic data to investigate the variations in its spectral lines. Overnight short-term and long-term changes in prominent emission lines are examined. No short-term changes are found in the line profiles. However, the peak intensity of the Hα emission line exhibits very small variation. In the long-term period, many emission lines including He I λ5875, λ6678, λ7065 and Fe II λ5018 are found to vary reflecting the symbiotic outburst activities. It is noted that He II λ4686 and Raman-scattered O VI λ6830, λ7088 are exceptions, where no significant variations are discernible. One of the noticeable lines is the λ5018 line. Its appearance and disappearance pattern are different from other emission lines, and the line is found to appear in outburst states. The Hα and Hβ lines remain very similar in our spectroscopic monitoring campaign.