• Title/Summary/Keyword: spectroscopic change

Search Result 136, Processing Time 0.028 seconds

Comparative Vibrational Spectroscopic Studies Between Nickel, Zinc Tetraphenylporphyrins and Tetraphenylchlorins

  • 송옥근;윤민중;장재린;김동호
    • Bulletin of the Korean Chemical Society
    • /
    • 제10권1호
    • /
    • pp.39-51
    • /
    • 1989
  • The infrared and resonance Raman spectra are reported for nickel and zinc tetraphenylchlorins. It is found that the IR and RR spectra become more complicated compared with the corresponding porphyrin analogs due to the symmetry changes. Some vibrational parameters like the core size and the symmetry change are examined in accordance with vibrational spectra of other type of chlorins.

분광타원법을 이용한 Pr 첨가 Ge-Sb-Se 계열 셀레나이드 유리의 굴절률 결정 (Determination of optical properties of Pr3+-doped selenide glasses of Ge-Sb-Se system using spectroscopic ellipsometry)

  • 신상균;김상준;김상열;최용규;박봉제;서홍석
    • 한국광학회지
    • /
    • 제14권6호
    • /
    • pp.594-599
    • /
    • 2003
  • 1.6 $\mu\textrm{m}$ 파장대의 U밴드 광증폭기용 광섬유 소재인 Pr첨가 Ge-Sb-Se 계열 셀레나이드 유리의 굴절률을 분광타원법을 이용하여 결정하였다. 시료의 광물성을 조사하기 위해 투과 파장 영역에서의 타원 스펙트럼을 Sellmeier 분산관계식에 기반한 공기/미시 거칠기층/표면층/기층으로 구성된 4상계의 모델에 적용하여 굴절률과 분산계수 및 박막구조상수를 동시에 얻을 수 있었다. 디스크 형태로 가공된 각 시료의 양면을 대상으로 위치에 따라 수회 반복 측정을 통하여 시료의 표면 거칠기의 영향을 파악함으로써 조성 변화에 대한 굴절률 변화 양상을 보다 정확히 파악하였다. 시료의 표면 거칠기가 굴절률 측정치의 편차에 주된 영향을 미쳤으나 1 몰%에 해당하는 소량의 조성변화에 따른 굴절률 변화를 신뢰할 수 있는 수준으로 결정할 수 있었다. 실험적으로 결정된 조성변화와 굴절률과의 관계식은 단일모드의 셀레나이드 광섬유 제작에 있어 코어와 클래드의 조성을 결정하는데 직접적으로 활용될 수 있다.

Optimization of Scan Parameters for in vivo Hyperpolarized Carbon-13 Magnetic Resonance Spectroscopic Imaging

  • Nguyen, Nguyen Trong;Rasanjala, Onila N.M.D.;Park, Ilwoo
    • Investigative Magnetic Resonance Imaging
    • /
    • 제26권2호
    • /
    • pp.125-134
    • /
    • 2022
  • Purpose: The aim of this study was to investigate the change in signal sensitivity over different acquisition start times and optimize the scanning window to provide the maximal signal sensitivity of [1-13C]pyruvate and its metabolic products, lactate and alanine, using spatially localized hyperpolarized 3D 13C magnetic resonance spectroscopic imaging (MRSI). Materials and Methods: We acquired 3D 13C MRSI data from the brain (n = 3), kidney (n = 3), and liver (n = 3) of rats using a 3T clinical scanner and a custom RF coil after the injection of hyperpolarized [1-13C]pyruvate. For each organ, we obtained three consecutive 3D 13C MRSI datasets with different acquisition start times per animal from a total of three animals. The mean signal-to-noise ratios (SNRs) of pyruvate, lactate, and alanine were calculated and compared between different acquisition start times. Based on the SNRs of lactate and alanine, we identified the optimal acquisition start timing for each organ. Results: For the brain, the acquisition start time of 18 s provided the highest mean SNR of lactate. At 18 s, however, the lactate signal predominantly originated from not the brain, but the blood vessels; therefore, the acquisition start time of 22 s was recommended for 3D 13C MRSI of the rat brain. For the kidney, all three metabolites demonstrated the highest mean SNR at the acquisition start time of 32 s. Similarly, the acquisition start time of 22 s provided the highest SNRs for all three metabolites in the liver. Conclusion: In this study, the acquisition start timing was optimized in an attempt to maximize metabolic signals in hyperpolarized 3D 13C MRSI examination with [1-13C] pyruvate as a substrate. We investigated the changes in metabolic signal sensitivity in the brain, kidney, and liver of rats to establish the optimal acquisition start time for each organ. We expect the results from this study to be of help in future studies.

Spectroscopic Studies on the Mechanism of Interaction of Vitamin $B_{12}$ with Bovine Serum Albumin

  • Kamat, B.P.;Seetharamappa, J.
    • Journal of Photoscience
    • /
    • 제11권1호
    • /
    • pp.29-33
    • /
    • 2004
  • The mechanism of interaction of cyanocobalamin (CB) with bovine serum albumin (BSA) has been investigated by spectrofluorometric and circular dichroism methods. Association constant for the CB-BSA system showed that the interaction is non-covalent in nature. Binding studies in the presence of an hydrophobic probe, 8-anilino-l-naphthalene sulphonic acid, sodium salt (ANS) showed that there is hydrophobic interaction between CB and ANS and they do not share common sites in BSA. Stern-Volmer analysis of fluorescence quenching data showed that the fraction of fluorophore (protein) accessible to the quencher (CB) was close to unity indicating thereby that both tryptophan residues of BSA are involved in drug-protein interaction. The rate constant for quenching, greater than $10^{10}$ $M^{-1}$ $s^{-1}$, indicated that the drug binding site is in close proximity to tryptophan residue of BSA. Thermodynamic parameters obtained from data at different temperatures showed that the binding of CB to BSA involves hydrophobic bonds predominantly. Significant increase in concentration of free drug was observed for CB in presence of paracetamol. Circular dichroism studies revealed the change in helicity of BSA due to binding of CB to BSA.

  • PDF

Spectroscopic Properties of Quercetin in AOT Reverse Micelles

  • Park, Hyoung-Ryun;Im, Seo-Eun;Seo, Jung-Ja;Bark, Ki-Min
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권3호
    • /
    • pp.828-832
    • /
    • 2014
  • The spectroscopic properties of quercetin (QCT) were studied in the AOT reverse micelle by fluorescence spectroscopy. Because the molecular structure of QCT is completely planar, excited state intramolecular proton transfer (ESIPT) occurs between the -OH at C(5) and carbonyl oxygen via intramolecular hydrogen bonding. This ESIPT happens at the $S_1$ state but not at the $S_2$ state. Because QCT is a good donor-acceptor-conjugated molecule at the excited state, this molecule can emit strong fluorescence but shows no $S_1{\rightarrow}S_o$ emission due to this ESIPT. Since the $S_2{\rightarrow}S_1$ internal conversion was very slow due to the small Franck-Condon factors, $S_2{\rightarrow}S_o$ fluorescence emission was observed. All of the experimental results indicated that the QCT resided at the bound water interface and that the position of solute did not change significantly in the micelle at various water concentrations.

SPECTROSCOPIC ADMITTIVITY IMAGING OF BIOLOGICAL TISSUES: CHALLENGES AND FUTURE DIRECTIONS

  • Zhang, Tingting;Bera, Tushar Kanti;Woo, Eung Je;Seo, Jin Keun
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제18권2호
    • /
    • pp.77-105
    • /
    • 2014
  • Medical imaging techniques have evolved to expand our ability to visualize new contrast information of electrical, optical, and mechanical properties of tissues in the human body using noninvasive measurement methods. In particular, electrical tissue property imaging techniques have received considerable attention for the last few decades since electrical properties of biological tissues and organs change with their physiological functions and pathological states. We can express the electrical tissue properties as the frequency-dependent admittivity, which can be measured in a macroscopic scale by assessing the relation between the time-harmonic electric field and current density. The main issue is to reconstruct spectroscopic admittivity images from 10 Hz to 1 MHz, for example, with reasonably high spatial and temporal resolutions. It requires a solution of a nonlinear inverse problem involving Maxwell's equations. To solve the inverse problem with practical significance, we need deep knowledge on its mathematical formulation of underlying physical phenomena, implementation of image reconstruction algorithms, and practical limitations associated with the measurement sensitivity, specificity, noise, and data acquisition time. This paper discusses a number of issues in electrical tissue property imaging modalities and their future directions.

FT-IR Spectroscopic Study of Preparation of Lead Zirconium Titanate (PZT) by Sol-Gel Processing

  • 오영재;황인욱;심인보;김용록
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권6호
    • /
    • pp.588-594
    • /
    • 1997
  • Gelation time, gel structure and volatility of by-products during gelation of PZT sol-gel processing were investigated by FT-IR spectroscopy. FT-IR spectroscopic study was performed on PZT gels with the various H₂O contents (1, 2 and 3 mol) and the several types (HNO₃, NH₄OH) and amounts (0.1, 0.2 mol) of catalysts, monitoring temporal (0, 1, 3, 10 weeks, 3 months and 3 years) and thermal (100-700 ℃) changes of FT-IR spectra. The interpretation of temporal change of the spectra revealed two trends. One is under the condition of 1 mol H₂O, 1 mol H₂O+0.1 mol HNO₃, 3 mol H₂O and the other is for 1 mol H₂O+0.1 mol NH₄OH, 2 mol H₂O, 1 mol H₂O+0.2 mol HNO₃. The gel structures and the gelation times for these conditions were discussed in comparison with the reported results of SiO₂, and we suggested the reaction mechanisms for these structural characteristics. Thermal variation of FT-IR spectra was interpreted as the evolution processes of gel by investigating the evaporation of solvent and the decomposition of organic residues.

SPECTROSCOPIC AND CHEMOMETRIC ANALYSIS OF SW-NIR SPECTRA OF SUGARS AND FRUITS

  • Golic, Mirta;Walsh, Kerry;Lawson, Peter
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1133-1133
    • /
    • 2001
  • Fruit sweetness, as indexed by total soluble solids (TSS), and fruit acidity are key factors in the description of the fruit eating quality. Our group has been using short wave NIR spectroscopy (SW-NIR; 700-1100 nm) in combination with chemometric methods (PLS and MLR) for the non-invasive determination of the fruit eating quality (1,2). In order to further improve calibration performance, we have investigated SW-NIR spectra of sucrose and D-glucose. In previous reports on the band assignment for these sugars in the 1100-2500 nm spectral region (3-7), it has been established that change in concentration, temperature and physical state of sugars reflects on the shape and position of the spectral bands in the whole NIR region(5-7). The effect of change in concentration and temperature of individual sugar solutions and sugar spiked Juice samples was analysed using combined spectroscopic (derivative, difference, 2D spectroscopy) and linear regression chemometric (PLS, MLR) techniques. The results have been compared with the spectral data of a range of fruit types, varying in TSS content and temperature. In the 800-950 nm spectral region, the B-coefficients for apples, peaches and nectarines resemble those generated in a calibration of pure sucrose in water (Fig. 1). As expected, these fruits exhibit better calibration and prediction results than those in which the B-coefficients were poorly related to those for sugar.(Figure omitted).

  • PDF

전자빔 처리된 다이아몬드의 분광학적 특성 연구 (Study on the Spectroscopic Characteristics of Irradiated Diamonds)

  • 손수학;김배섭;장윤득;김종랑;김종근;김정진
    • 한국광물학회지
    • /
    • 제22권4호
    • /
    • pp.407-415
    • /
    • 2009
  • 전자빔 조사를 조사량에 따라 단계별로 수행하면서 전자빔을 조사하는 동안 다이아몬드 내에서 일어나는 질소관련 결함의 변화와 색상의 변화를 분광학적 방법으로 측정 분석하였다. 일반적으로 질소의 양이 적을수록 공공이 쉽게 생성되며 A집합체보다 B집합체가 많은 시료에서 공공이 빠르게 생성된다는 결과를 보였다. 그 이유로 공공의 생성 정도가 전자빔에 의해 파괴될 수 있는 크기를 가진 결함의 양 즉, platelets에 비례한다는 결론을 추론할 수 있었다. 그리고 조사량이 증가할수록 옅은 녹색을 지닌 청색에서 짙은 청색으로 변화한다. 이러한 청색의 발현은 GR1센터의 점진적인 증가로 GR1센터 흡수포논에 의한 흡수띠의 영역은 더욱 확장되어 가시광선이 투과하는 최고 파장대가 530 nm에서 500 nm로 이동하면서 나타나는 현상이다.