• Title/Summary/Keyword: spectral representation method

Search Result 53, Processing Time 0.025 seconds

Wind fragility analysis of RC chimney with temperature effects by dual response surface method

  • Datta, Gaurav;Sahoo, Avinandan;Bhattacharjya, Soumya
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.59-73
    • /
    • 2020
  • Wind fragility analysis (WFA) of concrete chimney is often executed disregarding temperature effects. But combined wind and temperature effect is the most critical limit state to define the safety of a chimney. Hence, in this study, WFA of a 70 m tall RC chimney for combined wind and temperature effects is explored. The wind force time-history is generated by spectral representation method. The safety of chimney is assessed considering limit states of stress failure in concrete and steel. A moving-least-squares method based dual response surface method (DRSM) procedure is proposed in WFA to alleviate huge computational time requirement by the conventional direct Monte Carlo simulation (MCS) approach. The DRSM captures the record-to-record variation of wind force time-histories and uncertainty in system parameters. The proposed DRSM approach yields fragility curves which are in close conformity with the most accurate direct MCS approach within substantially less computational time. In this regard, the error by the single-level RSM and least-squares method based DRSM can be easily noted. The WFA results indicate that over temperature difference of 150℃, the temperature stress is so pronounced that the probability of failure is very high even at 30 m/s wind speed. However, below 100℃, wind governs the design.

Simulation of nonstationary wind in one-spatial dimension with time-varying coherence by wavenumber-frequency spectrum and application to transmission line

  • Yang, Xiongjun;Lei, Ying;Liu, Lijun;Huang, Jinshan
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.425-434
    • /
    • 2020
  • Practical non-synoptic fluctuating wind often exhibits nonstationary features and should be modeled as nonstationary random processes. Generally, the coherence function of the fluctuating wind field has time-varying characteristics. Some studies have shown that there is a big difference between the fluctuating wind field of the coherent function model with and without time variability. Therefore, it is of significance to simulate nonstationary fluctuating wind field with time-varying coherent function. However, current studies on the numerical simulation of nonstationary fluctuating wind field with time-varying coherence are very limited, and the proposed approaches are usually based on the traditional spectral representation method with low simulation efficiency. Especially, for the simulation of multi-variable wind field of large span structures such as transmission tower-line, not only the simulation is inefficient but also the matrix decomposition may have singularity problem. In this paper, it is proposed to conduct the numerical simulation of nonstationary fluctuating wind field in one-spatial dimension with time-varying coherence based on the wavenumber-frequency spectrum. The simulated multivariable nonstationary wind field with time-varying coherence is transformed into one-dimensional nonstationary random waves in the simulated spatial domain, and the simulation by wavenumber frequency spectrum is derived. So, the proposed simulation method can avoid the complicated Cholesky decomposition. Then, the proper orthogonal decomposition is employed to decompose the time-space dependent evolutionary power spectral density and the Fourier transform of time-varying coherent function, simultaneously, so that the two-dimensional Fast Fourier transform can be applied to further improve the simulation efficiency. Finally, the proposed method is applied to simulate the longitudinal nonstationary fluctuating wind velocity field along the transmission line to illustrate its performances.

A study of Satellite Image-Based Stereoscopic Vision System (위성영상 관련 입체도시시스템 개발에 관한 연구)

  • 김감래;김훈정;김주용
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.239-243
    • /
    • 2004
  • It does not exist almost that Most satellite image has both high spectral and spatial resolution. In order to apply the satellite image for to be actual, we need numerical and analytical technique development to improve the resolution. Specially in the function of solid illustration, we represent the solid image through the image generation to solid screen. The main function includes magnification, reduction, screen center movement, Panning, territory magnification. The method to process the image includes histogram and contrast modulation. Afterwards, we will develop the function includes 3-dimension cursor to control the elevation position and calculate the ground coordination automatically. There is the layer control includes the representation and the edition of 3D vector, extraction the Z value by On the Ground and digital elevation.

  • PDF

Vibration analysis of CFST tied-arch bridge due to moving vehicles

  • Yang, Jian-Rong;Li, Jian-Zhong;Chen, Yong-Hong
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.389-403
    • /
    • 2010
  • Based on the Model Coupled Method (MCM), a case study has been carried out on a Concrete-Filled Steel Tubular (CFST) tied arch bridge to investigate the vibration problem. The mathematical model assumed a finite element representation of the bridge together with beam, shell, and link elements, and the vehicle simulation employed a three dimensional linear vehicle model with seven independent degrees-of-freedom. A well-known power spectral density of road pavement profiles defined the road surface roughness for Perfect, Good and Poor roads respectively. In virtue of a home-code program, the dynamic interaction between the bridge and vehicle model was simulated, and the dynamic amplification factors were computed for displacement and internal force. The impact effects of the vehicle on different bridge members and the influencing factors were studied. Meanwhile the acceleration responses of some of the components were analyzed in the frequency domain. From the results some valuable conclusions have been drawn.

Random number sensitivity in simulation of wind loads

  • Kumar, K. Suresh
    • Wind and Structures
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • Recently, an efficient and practical method has been developed for the generation of univariate non-Gaussian wind pressure time histories on low building roofs; this methodology requires intermittent exponential random numbers for the simulation. On the other hand, the conventional spectral representation scheme with random phase is found suitable for the generation of univariate Gaussian wind pressure time histories on low building roofs; this simulation scheme requires uniform random numbers. The dependency of these simulation methodologies on the random number generator is one of the items affecting the accuracy of the simultion result; therefore, an attempt has been made to investigate the issue. This note presents the observed sensitivity of random number sets in repetitive simulations of Gaussian and non-Gaussian wind pressures.

Electronic States of Uranium Dioxide

  • Younsuk Yun;Park, Kwangheon;Hunhwa Lim;Song, Kun-Woo
    • Nuclear Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.202-210
    • /
    • 2002
  • The details of the electronic structure of the perfect crystal provides a critically important foundation for understanding the various defect states in uranium dioxide. In order to understand the local defect and impurity mechanism, the calculation of electronic structure of UO$_2$ in the one-electron approximation was carried out, using a semi-empirical tight-binding formalism(LCAO) with and without f-orbitals. The energy band, local and total density of states for both spin states are calculated from the spectral representation of Green’s function. The bonding mechanism in Perfect lattice of UO$_2$ is discussed based upon the calculations of band structure, local and total density of states.

Color matching of color CRT and dyed fabric by using experimental method (실험실적 방법에 의한 Color CRT와 염색직물의 칼라 매칭)

  • 김청섭;홍영기;배기서
    • Textile Coloration and Finishing
    • /
    • v.13 no.6
    • /
    • pp.397-404
    • /
    • 2001
  • The accurate representation of the colors of dyed fabric on a color CRT(cathode ray tube) screen is the basis for the automatic process in dyeing industry. In the former study, we had focused on the theoretically color matching method between CIE(International Commission on illumination) and RGB color coordinates, but In this study we tried simulating the colors obtained from fabrics on the color CRT by using experimental method. we obtained the following results. 1. We could simulate all of the color CRT by gamut mapping method, even though some of the KOSCOTE(Korea Standard Color of Textile) colors represented on the color CRT didn't exist in the region of color region 2. We could do conditional matching by CIE system, even though it was hard to do invariant matching the Red, Green, Blue phosphors of the color CRT because of the SPD(Spectral Power Distribution) which had been set up before. 3. We could simulate all the colors obtained from fabrics on the color CRT by matching those two color groups from KOSCOTE fabrics and color CRT using match algorithm and matching programs. 4. If we get over on obstacles by grafting CCM and CCK machines which have been used in educational and industrial areas by matching KOSCOTE with color CRT we will be able to invent color simulation system controled automatically.

  • PDF

Color matching of color CRT and dyed fabric by using experimental method (실험실적 방법에 의한 Color CRT와 염색직물의 칼라 매칭)

  • Kim, Cheong Seop;Hong, Yeong Gi;Bae, Gi Seo
    • Textile Coloration and Finishing
    • /
    • v.13 no.6
    • /
    • pp.39-39
    • /
    • 2001
  • The accurate representation of the colors of dyed fabric on a color CRT(cathode ray tube) screen is the basis for the automatic process in dyeing industry. In the former study, we had focused on the theoretically color matching method between CIE(International Commission on Illumination) and RGB color coordinates, but In this study we tried simulating the colors obtained from fabrics on the color CRT by using experimental method. we obtained the following results. 1. We could simulate all of the color CRT by gamut mapping method, even though some of the KOSCOTE(Korea Standard Color of Textile) colors represented on the color CRT didn′t exist in the region of color region. 2. We could do conditional matching by CIE system, even though it was hard to do invariant matching the Red, Green, Blue phosphers of the color CRT because of the SPD(Spectral Power Distribution) which had been set up before. 3. We could simulate all the colors obtained from fabrics on the color CRT by matching those two color groups from KOSCOTE fabrics and color CRT using match algorithm and matching programs. 4. If we get over on obstacles by grafting CCM and CCK machines which have been used in educational and industrial areas by matching KOSCOTE with color CRT we will be able to invent color simulation system controled automatically.

Time domain buffeting analysis of long suspension bridges under skew winds

  • Liu, G.;Xu, Y.L.;Zhu, L.D.
    • Wind and Structures
    • /
    • v.7 no.6
    • /
    • pp.421-447
    • /
    • 2004
  • This paper presents a time domain approach for predicting buffeting response of long suspension bridges under skew winds. The buffeting forces on an oblique strip of the bridge deck in the mean wind direction are derived in terms of aerodynamic coefficients measured under skew winds and equivalent fluctuating wind velocities with aerodynamic impulse functions included. The time histories of equivalent fluctuating wind velocities and then buffeting forces along the bridge deck are simulated using the spectral representation method based on the Gaussian distribution assumption. The self-excited forces on an oblique strip of the bridge deck are represented by the convolution integrals involving aerodynamic impulse functions and structural motions. The aerodynamic impulse functions of self-excited forces are derived from experimentally measured flutter derivatives under skew winds using rational function approximations. The governing equation of motion of a long suspension bridge under skew winds is established using the finite element method and solved using the Newmark numerical method. The proposed time domain approach is finally applied to the Tsing Ma suspension bridge in Hong Kong. The computed buffeting responses of the bridge under skew winds during Typhoon Sam are compared with those obtained from the frequency domain approach and the field measurement. The comparisons are found satisfactory for the bridge response in the main span.

Generation of critical and compatible seismic ground acceleration time histories for high-tech facilities

  • Hong, X.J.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.6
    • /
    • pp.687-707
    • /
    • 2007
  • High-tech facilities engaged in the production of semiconductors and optical microscopes are extremely expensive, which may require time-domain analysis for seismic resistant design in consideration of the most critical directions of seismic ground motions. This paper presents a framework for generating three-dimensional critical seismic ground acceleration time histories compatible with the response spectra specified in seismic design codes. The most critical directions of seismic ground motions associated with the maximum response of a high-tech facility are first identified. A new numerical method is then proposed to derive the power spectrum density functions of ground accelerations which are compatible with the response spectra specified in seismic design codes in critical directions. The ground acceleration time histories for the high-tech facility along the structural axes are generated by applying the spectral representation method to the power spectrum density function matrix and then multiplied by envelope functions to consider nonstationarity of ground motions. The proposed framework is finally applied to a typical three-story high-tech facility, and the numerical results demonstrate the feasibility of the proposed approach.