• Title/Summary/Keyword: spectral measurements

Search Result 424, Processing Time 0.026 seconds

Measurements of Impervious Surfaces - per-pixel, sub-pixel, and object-oriented classification -

  • Kang, Min Jo;Mesev, Victor;Kim, Won Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.303-319
    • /
    • 2015
  • The objectives of this paper are to measure surface imperviousness using three different classification methods: per-pixel, sub-pixel, and object-oriented classification. They are tested on high-spatial resolution QuickBird data at 2.4 meters (four spectral bands and three principal component bands) as well as a medium-spatial resolution Landsat TM image at 30 meters. To measure impervious surfaces, we selected 30 sample sites with different land uses and residential densities across image representing the city of Phoenix, Arizona, USA. For per-pixel an unsupervised classification is first conducted to provide prior knowledge on the possible candidate spectral classes, and then a supervised classification is performed using the maximum-likelihood rule. For sub-pixel classification, a Linear Spectral Mixture Analysis (LSMA) is used to disentangle land cover information from mixed pixels. For object-oriented classification several different sets of scale parameters and expert decision rules are implemented, including a nearest neighbor classifier. The results from these three methods show that the object-oriented approach (accuracy of 91%) provides more accurate results than those achieved by per-pixel algorithm (accuracy of 67% and 83% using Landsat TM and QuickBird, respectively). It is also clear that sub-pixel algorithm gives more accurate results (accuracy of 87%) in case of intensive and dense urban areas using medium-resolution imagery.

Analysis of Voice Quality Features and Their Contribution to Emotion Recognition (음성감정인식에서 음색 특성 및 영향 분석)

  • Lee, Jung-In;Choi, Jeung-Yoon;Kang, Hong-Goo
    • Journal of Broadcast Engineering
    • /
    • v.18 no.5
    • /
    • pp.771-774
    • /
    • 2013
  • This study investigates the relationship between voice quality measurements and emotional states, in addition to conventional prosodic and cepstral features. Open quotient, harmonics-to-noise ratio, spectral tilt, spectral sharpness, and band energy were analyzed as voice quality features, and prosodic features related to fundamental frequency and energy are also examined. ANOVA tests and Sequential Forward Selection are used to evaluate significance and verify performance. Classification experiments show that using the proposed features increases overall accuracy, and in particular, errors between happy and angry decrease. Results also show that adding voice quality features to conventional cepstral features leads to increase in performance.

A Field Experiment Study on the Use of OSMI Wave Bands for Agricultural Applications

  • Hong, Suk-Young;Rim, Sang-Kyu;Jung, Won-Kyo
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.4
    • /
    • pp.307-319
    • /
    • 1999
  • The aim of this study is to assess the OSMI (Ocean Scanning Multi-spectral Imager), whose central bands are 443nm, 490nm, 510nm, 555nm, 670nm, and 865nm, for agricultural applications. Radiance measurements, used to determine per cent reflectance of canopies and soils, were acquired with spectro-radiometers (Li-1800;330∼1,100nm, GER-SFOV;350∼2,500nm, and MSR-7000; 300∼2,500nm) in situ for crops and indoors for soils. OSMI equivalent bands and their ratio values were prepared(20nm interval for bands 1∼5; 40nm interval for band 6) by averaging spectral reflectance values to the real OSMI bands and analyzed as to crop growth parameters, leaf area index (LAI), total dry matter, and growth index in crops and physiochemical properties in soils. Spectral variations for each growth stage in rice and for crop discrimination in upland crops were significant statistically. In soils, clay and water content, CEC (Cation Exchange Capacity), free iron oxide, and some cation content were correlated with the OSMI equivalent bands. The result of this study shows OSMI wave bands would be promising for agricultural application in terms of spectral information and resolution.

Structural damage identification with power spectral density transmissibility: numerical and experimental studies

  • Li, Jun;Hao, Hong;Lo, Juin Voon
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.15-40
    • /
    • 2015
  • This paper proposes a structural damage identification approach based on the power spectral density transmissibility (PSDT), which is developed to formulate the relationship between two sets of auto-spectral density functions of output responses. The accuracy of response reconstruction with PSDT is investigated and the damage identification in structures is conducted with measured acceleration responses from the damaged state. Numerical studies on a seven-storey plane frame structure are conducted to investigate the performance of the proposed damage identification approach. The initial finite element model of the structure and measured acceleration measurements from the damaged structure are used for the identification with a dynamic response sensitivity-based model updating method. The simulated damages can be identified accurately without and with a 5% noise effect included in the simulated responses. Experimental studies on a steel plane frame structure in the laboratory are performed to further verify the accuracy of response reconstruction with PSDT and validate the proposed damage identification approach. The locations of the introduced damage are detected accurately and the stiffness reductions in the damaged elements are identified close to the true values. The identification results demonstrated the accuracy of response reconstruction as well as the correctness and efficiency of the proposed damage identification approach.

Vicarious Radiometric Calibration of the Ground-based Hyperspectral Camera Image (지상 초분광카메라 영상의 복사보정)

  • Shin, Jung-Il;Maghsoudi, Yasser;Kim, Sun-Hwa;Kang, Sung-Jin;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.213-222
    • /
    • 2008
  • Although hyperspectral sensing data have shown great potential to derive various surface information that is not usually available from conventional multispectral image, the acquisition of proper hyperspectral image data are often limited. To use ground-based hyperspectral camera image for remote sensing studies, radiometric calibration should be prerequisite. The objective of this study is to develop radiometric calibration procedure to convert image digital number (DN) value to surface reflectance for the 120 bands ground-based hyperspectral camera. Hyperspectral image and spectral measurements were simultaneously obtained from the experimental target that includes 22 different surface materials of diverse spectral characteristics at wavelength range between 400 to 900 nm. Calibration coefficients to convert image DN value to at-sensor radiance were initially derived from the regression equations between the sample image and spectral measurements using ASD spectroradiometer. Assuming that there is no atmospheric effects when the image acquisition and spectral measurements were made at very close distance in ground, we were also able to derive calibration coefficients that directly transform DN value to surface reflectance. However, these coefficients for deriving reflectance values should not be applied when the camera is used for aerial image that contains significant effect from atmosphere and further atmospheric correction procedure is required in such case.

THE EVOLUTIONARY STAGE OF H II REGION AND SPECTRAL TYPES OF MASSIVE STARS FROM KINEMATICS OF H2O MASERS IN W51 MAIN

  • Cho, Jae-Sang;Kan-Ya, Yukitoshi;Byun, Yong-Ik;Kurayama, Tomoharu;Choi, Yoon-Kyung;Kim, Mi-Kyoung
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.41-54
    • /
    • 2010
  • We report relative proper motion measurements of $H_{2}O$ masers in massive star-forming region W51 Main, based on data sets of VLBI observations for $H_{2}O$ masers at 22 GHz with Japanese VERA telescopes from 2003 to 2006. Data reductions and single-beam imaging analysis are to measure internal kinematics of maser spots and eventually to estimate the three-dimensional kinematics of $H_{2}O$ masers in W51 Main. Average space motions and proper motion measurements of $H_{2}O$ masers are given both graphical and in table formats. We find in this study that W51 Main appears to be associated with hyper-compact H II region with multiple massive proto-stars whose spectral types are of late O.

COMPARISONS OF MTSAT-1R INFRARED CHANNEL MEASUREMENTS WITH MODIS/TERRA

  • Han, Hyo-Jin;Sohn, Byung-Ju;Park, Hye-Suk
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.651-654
    • /
    • 2006
  • Infrared channels of newly launched Japanese geostationary satellite, MTSAT-1R are compared with well calibrated MODIS/Terra infrared measurements at 3.7, 6.7, 11, 12 ${\mu}m$ bands. There are four steps in this intercalibration method: 1) data collection, 2) spectral response function correction, 3) data collocation, and 4) calculation of mean bias and conversion coefficients. In order to minimize the navigation error of MTSAT-1R, comparisons are made over the area in which the viewing angle of MTSAT-1R is less than 50$^{\circ}$. The calibration method was tested for August 2005 and within the 40$^{\circ}N$-40$^{\circ}S$, 100$^{\circ}$E-180$^{\circ}$E domain. The differences of spectral response functions were corrected through radiative transfer model simulation. Constructing collocated data differences in viewing geometry, observation time and space were taken into account. In order to avoid the radiance variation induced by cloud presence, clear-sky targets are selected as intercalibration target. The mean biases of 11, 12, 6.7, and 3.7 ${\mu}m$ bands are about -0.16, 0.36, 1.31, and -6.69 K, suggesting that accuracies of 3.7 ${\mu}m$ is questionable while other channels are comparable to MODIS

  • PDF

GAMMA-SPECTROMETRY IN ENVIRONMENTAL MONITORING OF NUCLEAR POWER

  • Cechak, Tomas;Gerndt, Josef;Kluson, Jaroslav;Musilek, Ladislav;Thinova, Lenka
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.203-206
    • /
    • 2001
  • The mathematical processing (unfolding) of pulse height spectra from a scintillation detector helps to calculate the photon fluence rate energy distribution in a measured photon field. The data processing is based on the knowledge of detection system response function and directional dependence respectively. The experimental results of the photon fields measurements in the vicinity of the spent fuel temporary storage and inside the storage hall are presented. The containers Castor 440 are used for temporary storing of the burnt up fuel assemblies in the Czech nuclear power plant Dukovany. A set of periodical measurements was performed in order to get basic information on the time dependence of the photon fields spatial distributions and spectral characteristics in the temporary storage hall and its vicinity. The photon fields were measured by the scintillation system. The obtained photon fields spatial distributions and spectral characteristics present the information on the radiation hazard in the storage.

  • PDF

Damage detection on output-only monitoring of dynamic curvature in composite decks

  • Domaneschi, M.;Sigurdardottir, D.;Glisic, B.
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • Installation of sensors networks for continuous in-service monitoring of structures and their efficiency conditions is a current research trend of paramount interest. On-line monitoring systems could be strategically useful for road infrastructures, which are expected to perform efficiently and be self-diagnostic, also in emergency scenarios. This work researches damage detection in composite concrete-steel structures that are typical for highway overpasses and bridges. The techniques herein proposed assume that typical damage in the deck occurs in form of delamination and cracking, and that it affects the peak power spectral density of dynamic curvature. The investigation is performed by combining results of measurements collected by long-gauge fiber optic strain sensors installed on monitored structure and a statistic approach. A finite element model has been also prepared and validated for deepening peculiar aspects of the investigation and the availability of the method. The proposed method for real time applications is able to detect a documented unusual behavior (e.g., damage or deterioration) through long-gauge fiber optic strain sensors measurements and a probabilistic study of the dynamic curvature power spectral density.

Effect of deflected inflow on flows in a strongly-curved 90 degree elbow

  • Iwamoto, Yukiharu;Kusuzaki, Ryo;Sogo, Motosuke;Yasuda, Kazunori;Yamano, Hidemasa;Tanaka, Masaaki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.1
    • /
    • pp.76-85
    • /
    • 2017
  • Wall pressure measurements and flow visualization were conducted for a 90 degree elbow with an axis curvature radius the same as its inner diameter (125 mm). Reynolds numbers 320,000 and 500,000, based on the inner diameter and bulk velocity, were examined. A deflected inflow, having an almost constant velocity slope and a faster velocity at the inside, was introduced. Ensemble averaged pressure distributions showed that no difference of normalized pressure could be found in both the Reynolds number cases. Power spectral density functions of pressures exhibited that the fluctuation having the Strouhal number (based on the inner diameter and bulk velocity) of 0.6 existed in the downstream region of the elbow, which was 0.1 larger than that of the uniform inflow case [1]. Results of numerical calculations qualitatively coincided with the experimental ones.