• Title/Summary/Keyword: spectral function

Search Result 827, Processing Time 0.029 seconds

A Technique for Calculating the Hybrid Mode Despersion Characteristics of Microstrip Lines using a Planar Waveguide Model (Planar Waveguide 모델을 이용한 마이크로 스트립선로의 하이브리드 모드 분산특성 계산)

  • 윤현보;고성선;백낙준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.1
    • /
    • pp.36-49
    • /
    • 1987
  • A planar waveguide model is presented for calculating dispersion characteristics of the normalized phase velocity and characteristic impedance with the frequency dependent effective dielectric constand and effective width in microstrip lines of the hybrid mode. Eeff(f) and Weff(f) are applied to a planar waveguide model by using an empirical relations and formula designed for CAD purposes as a function of frequency. A wide range of relative dielectric constants and the strip $h_{width}$strate height(W/h ratios), $0.5$\leq$W/h\leq2.5$ are used. These results are compared with static value, spectral domain analysis, and empirical results. As the result of a computer simulation, in the case of using a planar waveguide model, the frequency dependent normalized phase velocity is more closely approached to 1/ and characteristic impedance is more increased than the other method that has already been presented as the increasing of the frequency. And, the case of applying Eeff(f) designed for the purpose of CAD to this proposed model is show in better result than the case of using a empirical relations.

  • PDF

SiC(3C)/Si Photodetector (SiC(3C)/Si 수광소자)

  • 박국상;남기석;김정윤
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.212-216
    • /
    • 1999
  • SiC(3C) photodiodes (PDs) were fabricated on p-type Si(111) substrates using chemical vapor deposition (CVD) technique by pyrolyzing tetramethylsilane (TMS) with $H_{2}$ carrier gas. Electrical properties of SiC(3C) were investigated by Hall measurement and current-voltage (I-V) characteristics. SiC(3C) layers exhibited n-type conductivity. Ohmic contact was formed by thermal evaporation Al metal through a shadow-mask. The optical gain $(G_{op})$ of the SiC(3C)/Si PD was measured as a function of the incident wavelength. For the analysis of the photovoltaic detection of the Sic(3C) n/p PD, the spectral response (SR) has calculated by using the electrical parameters of the SiC(3C) layer and the geometric structure of the PD. The peak response calculated for properly chosen parameters was about 0.75 near 550 nm. We expect a good photoresponse in the SiC(3C) heterostructure for the wavelength range of 400~600 nm. The SiC(3C) photodiode can detect blue and near ultraviolet (UV) radiation.

  • PDF

Evaluation of the Performance Test Load through the Estimation of Vertical Loads on Vibration-Proof Fastening Systems (방진체결장치에 작용하는 수직하중 평가를 통한 성능시험하중 평가)

  • Yang, Sin Chu
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.777-784
    • /
    • 2016
  • In this study, regulation of the performance test load of a vibration-proof fastening system used in urban railways was established through evaluation of the loads that it bears in the field. In order to investigate the range of the dynamic stiffness of the vibration-proof fastening system, dynamic stiffness tests were carried out for three types of vibration-proof fastening system that can be domestically supplied. Train and track interaction analyses in the frequency domain were carried out to evaluate the dynamic wheel loads. The track irregularity, which is a very important input factor in train and track interaction analysis, was considered as a PSD (Power Spectral Density) function, which was derived based on the measured data. The loads on the vibration-proof rail fastening system were evaluated considering various operating conditions in the urban railway. Regulation of the performance test load of the vibration-proof rail fastening system was established based on the evaluated loads.

AKARI-NEP : EFFECTS OF AGN PRESENCE ON SFR ESTIMATES OF GALAXIES

  • Marchetti, L.;Feltre, A.;Berta, S.;Baronchelli, I.;Serjeant, S.;Vaccari, M.;Bulgarella, D.;Karouzos, M.;Murata, K.;Oi, N.;Pearson, C.;Rodighiero, G.;Segdwick, C.;White, G.J.
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.239-244
    • /
    • 2017
  • How does the presence of an AGN influence the total SFR estimates of galaxies and change their distribution with respect to the Galaxy Main Sequence? To contribute to solving this question, we study a sample of 1133 sources detected in the North Ecliptic Pole field (NEP) by AKARI and Herschel. We create a multi-wavelength dataset for these galaxies and we fit their multi-wavelength Spectral Energy Distribution (SED) using the whole spectral regime (from 0.1 to $500{\mu}m$). We perform the fit using three procedures: LePhare and two optimised codes for identifying AGN tracers from the SED analysis. In this work we present an overview of the comparison between the estimates of the Infrared bolometric luminosities (between 8 and $1000{\mu}m$) and the AGN fractions obtained exploiting these different procedures. In particular, by estimating the AGN contribution in four different wavelength ranges ($5-40{\mu}m$, $10-20{\mu}m$, $20-40{\mu}m$ and $8-1000{\mu}m$) we show how the presence of an AGN affects the PAH emission by suppressing the ratio $\frac{L_{8{\mu}m}}{L_{4.5{\mu}m}}$ as a function of the considered wavelength range.

Spatio-Spectral Coherence Analysis of ERP signals for Attentional Visual Stimulus (시각 자극의 집중에 따른 뇌유발전위의 공간-주파수 상관 분석)

  • Lee, ByuckJin;Yoo, SunKook
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.217-228
    • /
    • 2013
  • In this paper, the brain function in relation with human's visual attention was investigated by means of coherence and bicoherence methods. Throughout experimentation with attentional visual stimulus ERP (Event Related Potential) data and synthesized simulated data with different combinations of parameters, it is demonstrated that bicoherence and coherence can be useful to reveal the phase synchronies between different frequency bands at fixed scalp location, and between different scalp locations at fixed frequency band, respectively. Both methods are also affected by time interval from the onset, and the level of white noise added. The phase coupled relationships among ${\Theta}$, ${\delta}$, and ${\alpha}$ bands, and between frontal and central lobes were observed for attentional tasks, while those were little observable for inattentional tasks, which can show brain's functional spatio-spectral differences associated with human's attention.

Infrared Signature Analysis on a Flat Plate by Using the Spectral BRDF Data (파장별 BRDF 데이터를 이용한 평판의 적외선 복사휘도 특성 분석)

  • Choi, Jun-Hyuk;Kim, Dong-Geon;Kim, Jung-Ho;Kim, Tae-Kuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.577-585
    • /
    • 2010
  • This paper is a part of developing a software that predicts the infrared signal emitted from a ground object by considering solar irradiation. The radiance emitted from a surface can be calculated by using the temperature and optical characteristics of the surface object. The bidirectional reflectance distribution function (BRDF) is defined as the ratio of reflected radiance to incident irradiance. It is a very important surface reflection property that decides the reflected radiance from the object. In this paper, the spectral radiance received by a remote sensor over the mid-wave infrared(MWIR), and the long-wave infrared(LWIR) regions are computed and compared each other for several different materials. The results show that the optical surface properties such as the BRDF and the emissivity of the object surface can play a major role in generating the infrared signatures of various objects, and the largest infrared signal may reach up to 10 times the smallest one when the infrared signals obtained from a flat plate with different surface conditions under the sun light.

THE ANALYSIS OF PSM (POWER SUPPLY MODULE) FOR MULTI-SPECTRAL CAMERA IN KOMPSAT

  • Park Jong-Euk;Kong Jong-Pil;Heo Haeng-Pal;Kim Young Sun;Chang Young Jun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.493-496
    • /
    • 2005
  • The PMU (Payload Management Unit) in MSC (Multi-Spectral Camera) is the main subsystem for the management, control and power supply of the MSC payload operation. The PMU shall handle the communication with the BUS (Spacecraft) OBC (On Board Computer) for the command, the telemetry and the communications with the various MSC units. The PMU will perform that distributes power to the various MSC units, collects the telemetry reports from MSC units, performs thermal control of the EOS (Electro-Optical Subsystem), performs the NUC (Non-Uniformity Correction) function of the raw imagery data, and rearranges the pixel data and output it to the DCSU (Data Compression and Storage Unit). The BUS provides high voltage to the MSC. The PMU is connected to primary and redundant BUS power and distributes the high unregulated primary voltages for all MSC sub-units. The PSM (Power Supply Module) is an assembly in the PMU implements the interface between several channels on the input. The bus switches are used to prevent a single point system failure. Such a failure could need the PSS (Power Supply System) requirement to combine the two PSM boards' bus outputs in a wired-OR configuration. In such a configuration if one of the boards' output gets shorted to ground then the entire bus could fail thereby causing the entire MSC to fail. To prevent such a short from pulling down the system, the switch could be opened and disconnect the short from the bus. This switch operation is controlled by the BUS.

  • PDF

Synergism Between Zinc and Taurine in the Visual Sensitivity of the Bullfrog's Eye

  • Kim, Hyun-Jung;Kim, You-Young
    • Journal of Photoscience
    • /
    • v.7 no.3
    • /
    • pp.115-121
    • /
    • 2000
  • Although there are high concentrations of zinc and taurine in ocular tissue, their exact role and correlation in the visual process are not clear. The purpose of present study was to clarity this point using electroretinogram (ERG) recording and spectrophotometer measurements before and after zinc and taurine treatment in bullfrog's eye. The optimal zinc concentration used in this study was 10$^{-2}$ M ZnCl$_2$120 ${mu}ell$/12$m\ell$ ringer solution while the optimal turine concentration was 10$^{-2}$ M taurine 12${mu}ell$/12$m\ell$ ringer solution. For the effects of zinc and taurine on the retinal function, the changes of ERG parameters (especially threshold and b-wave) and absorption spectra were observed before and after treatment. It is noteworthy that high concentrations of zinc and taurine present in the retinal pigment epithelium and the retina. Our results indicate that dark-adapted ERG threshold became elevated and the peak amplitude of b-wave was increased with zinc and taurine treatment. Furthermore there are some synergism effects between zinc and taurine as a result of co-treatment. In spectral scan, absorbance increment due to zinc and taurine treatment was shown over the whole range of spectral range (300-750 nm) with some differences in absorbance increment depending on the case of treatment. As the results of above we believe that zinc and taurine, which are abundant in the retinal pigment epithelium and the retina particularly, may be essential factors for visual process, have some synergism with each other and be required to improve the visual sensitivity during visual adaptation.

  • PDF

Structural health monitoring of Canton Tower using Bayesian framework

  • Kuok, Sin-Chi;Yuen, Ka-Veng
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.375-391
    • /
    • 2012
  • This paper reports the structural health monitoring benchmark study results for the Canton Tower using Bayesian methods. In this study, output-only modal identification and finite element model updating are considered using a given set of structural acceleration measurements and the corresponding ambient conditions of 24 hours. In the first stage, the Bayesian spectral density approach is used for output-only modal identification with the acceleration time histories as the excitation to the tower is unknown. The modal parameters and the associated uncertainty can be estimated through Bayesian inference. Uncertainty quantification is important for determination of statistically significant change of the modal parameters and for weighting assignment in the subsequent stage of model updating. In the second stage, a Bayesian model updating approach is utilized to update the finite element model of the tower. The uncertain stiffness parameters can be obtained by minimizing an objective function that is a weighted sum of the square of the differences (residuals) between the identified modal parameters and the corresponding values of the model. The weightings distinguish the contribution of different residuals with different uncertain levels. They are obtained using the Bayesian spectral density approach in the first stage. Again, uncertainty of the stiffness parameters can be quantified with Bayesian inference. Finally, this Bayesian framework is applied to the 24-hour field measurements to investigate the variation of the modal and stiffness parameters under changing ambient conditions. Results show that the Bayesian framework successfully achieves the goal of the first task of this benchmark study.

AGV-induced floor micro-vibration assessment in LCD factories by using a regressional modified Kanai-Tajimi moving force model

  • Lee, C.L.;Su, R.K.L.;Wang, Y.P.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.4
    • /
    • pp.543-568
    • /
    • 2013
  • This study explores the floor micro-vibrations induced by the automated guided vehicles (AGVs) in liquid-crystal-display (LCD) factories. The relationships between moving loads and both the vehicle weights and speeds were constructed by a modified Kanai-Tajimi (MKT) power spectral density (PSD) function whose best-fitting parameters were obtained through a regression analysis by using experimental acceleration responses of a small-scale three-span continuous beam model obtained in the laboratory. The AGV induced floor micro-vibrations under various AGV weights and speeds were then assessed by the proposed regressional MKT model. Simulation results indicate that the maximum floor micro-vibrations of the target LCD factory fall within the VC-B and VC-C levels when AGV moves at a lower speed of 1.0 m/s, while they may exceed the acceptable VC-B level when AGV moves at a higher speed of 1.5 m/s. The simulated floor micro-vibration levels are comparable to those of typical LCD factories induced by AGVs moving normally at a speed between 1.0 m/s and 2.0 m/s. Therefore, the numerical algorithm that integrates a simplified sub-structural multi-span continuous beam model and a proposed regressional MKT moving force model can provide a satisfactory prediction of AGV-induced floor micro-vibrations in LCD factories, if proper parameters of the MKT moving force model are adopted.