• Title/Summary/Keyword: spectral design

Search Result 681, Processing Time 0.025 seconds

Network Analysis and Design of Aperture-Coupled Cavity-Fed Microstrip Patch Antenna (개구면 결합 공진기 급전 마이크로스트립 패치 안테나의 회로망 해석 및 설계)

  • Shin Jong Woo;Kim Jeong Phill
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.12
    • /
    • pp.93-102
    • /
    • 2004
  • This paper presents a general theory for the analysis of an aperture-coupled cavity-fed microstrip patch antenna to develop a simple but accurate equivalent circuit model. The developed equivalent circuit consists of ideal transformers, admittance elements, and transmission lines. These circuit element values are computed by applying the complex power concept, the Fourier transform and series representation, and the spectral-domain immittance approach. The input impedance of the antenna is calculated and compared with the published data. Good agreements validate the simplicity and accuracy of the developed equivalent circuit model.

Analysis and Design of Branch Line Coupler using Microstrip Lines with Overlay (덮개층이 있는 마이크로스트립 선로를 이용한 브랜치 선로 결합기 해석 및 설계)

  • 이승엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.795-801
    • /
    • 2001
  • A method of miniaturizing branch line coupler is presented. The method utilizes the microstrip line with overlay(or superstrate). The frequency dependent characteristics, dispersion and characteristic impedance, of this line are obtained by Immitance method in spectral domain and Method of Line. The relevant spectral domain Green's function is given and used to obtain numerical results. The branch line couplers with overlays are designed and fabricated at 2 GHz. The experimental results show that the size of coupler with overlay(${epsilon}_r$=10.2) is 31.4 precent smaller than conventional coupler. This minimized coupler is suitable for Butler Matrix as feeder for mobile communication beam forming antenna.

  • PDF

Performance Analysis of UWB System using S-Function Builder (S-Function Builder를 이용한 UWB 시스템의 성능해석)

  • Lee Sung-Sin;Byon Kun-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.516-521
    • /
    • 2005
  • The application of UWB not only complies with the requirements of remote sensors system(ECG), it also contributes to the effectiveness of the implementations through its unique qualities such as ultra low transmission power - an important factor when dealing with biomedical equipment. In this paper, the aim is to replace the wired ECG sensors with a wireless link and design wireless UWB communication system. The various pulse shapes are presented that satisfies the FCC spectral mask and FCC part 15 rule. It is shown that UWB can be a high rate transmission over short ranges using Rake receiver, with the capability for reliably transmitting 100Mbps over distance at about 10 meters.

A Channel Assignment by Graph Coloring Problem in Cellular Mobile Communication Control System (셀룰라 이동통신 제어 시스템에서 색채화 문제에 의한 채널할당)

  • 장성환;라상동
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.9
    • /
    • pp.1658-1667
    • /
    • 1994
  • In a cellular mobile communication control system, assignment channel for a call in a cell so as to achieve high spectral efficience is an important problem within limited frequence bandwidth. The spectral efficiency is related to the coloring problem of graph theory in a cellular mobile communication control system. In this paper, we propose channel offset scheme using a graph theory of cellular mobile communication control system and formulate chromatic bandwidth of channel offset system which is related graph coloring problem. From formulated channel assignment problem, we investgate an optimal channel offset scheme of more efficent frequence spectrum and cell design according to channel constitution and give and upper and lower bound for overall srectral bandwidth.

  • PDF

Representative Evaluation of Topographical Characteristics of Road Surface for Tire Contact Force Analysis (노면 표면거칠기 특성의 대표값 정량화와 타이어 접촉력 해석 기법에 대한 고찰)

  • Seo, Beom Gyo;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.303-308
    • /
    • 2017
  • Most automobile tire companies have not yet considered the geometric information of a road at the design stage of a tire because the topographical characterization of a road surface is very difficult owing to its vastness and randomness. A road surface shows variable surface roughness values according to magnification, and thus, the contact force between the road and tire significantly fluctuates with respect to the scale. In this study, we make an attempt to define a representative value for surface topographical information at multi-scale levels. To represent surface topography, we use a statistical method called power spectral density (PSD). We use the fast Fourier transform (FFT) and PSD to analyze the height profiles of a random surface. The FFT and PSD of a surface help in obtaining a fractal dimension, which is a representative value of surface topography at all length scales. We develop three surfaces with different fractal dimensions. We use finite element analysis (FEA) to observe the contact forces between a tire and the road surfaces with three different fractal dimensions. The results from FEA reveal that an increase in the fractal dimension decreases the contact length between the tire and road surfaces. On the contrary, the average contact force increases. This result indicates that designing and manufacturing a tire considering the fractal dimension of a road makes safe driving possible, owing to the improvement in service life and braking performance of the tire.

Design and fabrication of holographic combiner for automotive head-up display (Head-Up Display 용 홀로그래픽 광결합기의 설계 및 제작)

  • 유호식;정만호
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.2
    • /
    • pp.120-127
    • /
    • 1999
  • We discussed two main types-conformal and non-conformal (powered) - of holographic combiner. A theoretical model based on the Kogelnik's coupled wave theory was used to illustrate bandwidth and efficiency properties. Also we showed numerical values for the aberrations that are induced by a wavelength shift from construction to reconstruction and found optimum coordinates to reduce the chrolatic aberation of construction beams using aberration balancing techniques. The holographic combiner manufactured in conformal type with 60$^{\circ}$ incidence angle at 514.5 nm had narrow angular bandwidth (FWHM) of 4.1" and spectral bandwidth of 11.4 nm, while non-conformal one with 50$^{\circ}$, 30$^{\circ}$ incidence angle at 514.5 nm showed spectral and angular bandwidth of 10.7 nm and 5.5$^{\circ}$, respectively.vely.

  • PDF

Trellis-Coded Differential Unitary Space-Time Modulation with High Spectral Efficiency (고속 데이터 전송을 위한 트렐리스 부호 차동 유일 시공간 변조 기법에 관한 연구)

  • Kim Taeyoung;Kang Changeon;Hong Daesik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1C
    • /
    • pp.18-24
    • /
    • 2005
  • In this paper, a new trellis-coded differential unitary space-time modulation (TC-DUSTM) scheme based on amplitude/phase-shift-keying (APSK) signals is proposed. In particular, the design criterion of the trellis coding is proposed to combine the trellis coding and DUSTM scheme based on APSK constellation. From the computer simulations, we verify the superiority of the proposed TC-DUSTM based on APSK signals at the higher transmission rate. In addition, the proposed scheme can suppress the irreducible error of the differential scheme.

Seismic behavior of RC framed shear wall buildings as per IS 1893 and IBC provisions

  • Jayalekshmi, B.R.;Chinmayi, H.K.
    • Geomechanics and Engineering
    • /
    • v.9 no.1
    • /
    • pp.39-55
    • /
    • 2015
  • Usually the analyses of structures are carried out by assuming the base of structures to be fixed. However, the soil beneath foundation alters the earthquake loading and varies the response of structure. Hence, it is not realistic to analyze structures by considering it to be fixed. The importance of soil-structure interaction was realized from the past failures of massive structures by neglecting the effect of soil in seismic analysis. The analysis of massive structures requires soil flexibility to be considered to avoid failure and ensure safety. Present study, considers the seismic behavior of multi-storey reinforced concrete narrow and wide buildings of various heights with and without shear wall supported on raft foundation incorporating the effect of soil flexibility. Analysis of the three dimensional models of six different shear wall positions founded on four different soils has been carried out using finite element software LS DYNA. The study investigates the differences in spectral acceleration coefficient (Sa/g), base shear and storey shear obtained following the seismic provisions of Indian standard code IS: 1893 (2002) (IS) and International building code IBC: 2012 (IBC). The base shear values obtained as per IBC provisions are higher than IS values.

Wind-tunnel tests on high-rise buildings: wind modes and structural response

  • Sepe, Vincenzo;Vasta, Marcello
    • Wind and Structures
    • /
    • v.18 no.1
    • /
    • pp.37-56
    • /
    • 2014
  • The evaluation of pressure fields acting on slender structures under wind loads is currently performed in experimental aerodynamic tests. For wind-sensitive structures, in fact, the knowledge of global and local wind actions is crucial for design purpose. This paper considers a particular slender structure under wind excitation, representative of most common high-rise buildings, whose experimental wind field on in-scale model was measured in the CRIACIV boundary-layer wind tunnel (University of Florence) for several angles of attack of the wind. It is shown that an efficient reduced model to represent structural response can be obtained by coupling the classical structural modal projection with the so called blowing modes projection, obtained by decomposing the covariance or power spectral density (PSD) wind tensors. In particular, the elaboration of experimental data shows that the first few blowing modes can effectively represent the wind-field when eigenvectors of the PSD tensor are used, while a significantly larger number of blowing modes is required when the covariance wind tensor is used to decompose the wind field.

Sea state description of Asabo offshore in Nigeria

  • Jasper, Agbakwuru A.;Bernard, Akaawase T.;Gudmestad, Ove T.
    • Ocean Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.25-47
    • /
    • 2020
  • A study of the wave conditions for the Asabo offshore location at the Qua Iboe oil field in Eastern Nigeria has been carried out. Statistical analysis was applied to three (3) years of data comprising spectral periods, Tp and significant wave heights, Hs. The data was divided into two (2); data from October to April represents one set of data and data from May to September represents another set of data. The results were compared with similar studies at other locations offshore of West Africa. It was found that there is an absence of direct swellwaves from the Southern Ocean reaching the location under study (the Asabo site). This work suggests that the wave system is largely emanating from the North Atlantic storms. The presence of numerous islands near the Asabo location shields the site from effects of storms from south west and therefore swells from the Southern Ocean. It is noted that the local wind has little or no contribution. An Hs maximum of 2 m is noted at the Asabo offshore location. It is found that the Weibull distribution best describes the wave distribution at Asabo. Thus, the Weibull distribution is suggested to be adequate for long term prediction of extreme waves needed for offshore design and operations at this location.