• Title/Summary/Keyword: spectral compatibility

Search Result 22, Processing Time 0.015 seconds

Effect of nonlinear soil-structure interaction on the seismic performance of 3D isolated transformers when scaling the response spectra using the improved wavelet method

  • Mohammad Mahmoudi;Abbas Ghasemi;Shahriar Tavousi Tafreshi
    • Structural Engineering and Mechanics
    • /
    • v.91 no.5
    • /
    • pp.469-486
    • /
    • 2024
  • Electric transformers are major components of electrical systems, and damage to them caused by earthquakes can result in significant financial loss. The current study modeled a three-dimensional (3D) isolated electrical transformer under horizontal and vertical records from different earthquakes. Instead of using fixed coefficients, an improved wavelet method has been used to create the greatest compatibility between the response spectra and the target spectrum. This method has primarily been used for dynamic analysis of isolated structures with spring-damper devices because it has shown greater accuracy in predicting the response of such structures. The effect of the nonlinear soil-structure interaction on the probability of transformer failure also has been investigated. Soil and structure interaction modeling was carried out using a beam on a nonlinear Winkler foundation. The effect of the nonlinear soil-structure interaction during dynamic analysis of transformers revealed that the greatest increase in the probability of transformer failure was in the fixed-base condition when the structure was located on soft soil. This intensified the response of the structure and increased the probability of transformer failure by up to 27% for far-field and up to 95% for near-field ground motions. A comparison of the results indicates that the use of 3D isolation systems in transformers in areas with soft clay that are subject to near-field ground motions can strongly reduce the probability of failure and improve the seismic performance of the transformer.

Establishment of a library of fragments for the rapid and reliable determination of anabolic steroids by liquid chromatography-quadrupole time of flight-mass spectrometry

  • Do, Jung-Ah;Noh, Eunyoung;Yoon, Soon-Byung;Choi, Hojune;Baek, Sun-Young;Park, Sung-Kwan;Lee, Sang-Gyeong
    • Analytical Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.10-19
    • /
    • 2017
  • Anabolic steroids have similar structures to testosterone, both of which promote the growth of muscle mass and increase strength. However, the side effects of anabolic steroid use may lead to heart attacks or strokes. Additionally, the excessive use of steroids inhibits the production of the sex hormones in the body via a negative feedback loop, which results in testicular atrophy in males and amenorrhea in females. Currently, the method of choice used to test for the presence of anabolic steroids is GC-MS. However, GC-MS methods require chemical derivatization of the steroid sample to ensure compatibility with the analytical method; therefore, analysis of many different samples is difficult and time consuming. Unlike GC-MS, the liquid chromatography-quadrupole-time of flight mass spectrometry (LC-Q-TOF-MS) method is suitable for many samples. Twenty-two different anabolic steroids were analyzed by LC-Q-TOF-MS with various collision energies (CE). Accurate mass spectral data were obtained using a Q-TOF-MS equipped with an electro-spray ionization source and operated in the positive MS/MS mode for several classes of steroids that are often the targets of testing. Based on the collected data, fragmentation pathways were carefully elucidated. The high selectivity and sensitivity of the LC-Q-TOF-MS instrument combined with these fragmentation pathways offers a new approach for the rapid and accurate screening of anabolic steroids. The obtained data from the 22 different anabolic steroids will be shared with the scientific community in order to establish a library to aid in the screening of illegal anabolic steroids.