• 제목/요약/키워드: speckle image

검색결과 198건 처리시간 0.029초

레이저 스페클간섭법에 의한 STS430의 열팽창계수 측정 (Thermal Expansion Coefficient Measurement of STS430 by Laser Speckle Interferometry)

  • 김경석;이항서;정현철;양승필
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.29-33
    • /
    • 2004
  • This paper presents ESPI system for the measurement of thermal expansion coefficient of STS430 up to 1,000$^{\circ}C$. Existing methods, strain gauge and moire have the limitation of contact to object and do not supply the coefficient up to 800$^{\circ}C$. There needs to measure the data up to 800$^{\circ}C$, because heat resistant materials have high melting temperature up to 1,000$^{\circ}C$. In previous studies related to thermal strain analysis, the quantitative results are not reported by ESPI at high temperature, yet. In-plane ESPI and vacuum chamber for the reduction of air turbulence and oxidation are designed for the measurement of the coefficient up to 1,000$^{\circ}C$and speckle correlation fringe pattern images are processed by commercial image filtering tool-smoothing, thinning and enhancement- to obtain quantitative results, which is compared with references data. The comparison shows two data are agreed within 4.1% blow 600$^{\circ}C$ however, there is some difference up to 600$^{\circ}C$. Also, the incremental ratio of the coefficient is changed up to 800$^{\circ}C$. The reason is the phase transformation of STS430 probably begins at 800$^{\circ}C$.

  • PDF

레이저스펙클 간섭법과 4단계 위상이동법에 의한 외팔보점용접부의 면외 변위측정 (Measurement of Out-of-plane Displacement in a Spot Welded Canti-levered Plate using Laser Speckle Interferometry with 4-step Phase Shifting Technique)

  • 백태현;김명수;차병석;조성호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.226-230
    • /
    • 2001
  • Electronic Speckle Pattern Interferometry (ESPI) has been recently developed and widely used because it has advantage to be able to measure surface deformations of engineering components and materials in industrial areas with non-contact. The spekle patterns to be formed with interference phenomena of scattering phenomena measure the out-of-plane deformations, together with the use of digital image equipment to process the informations included in the speckle patterns and the display consequent interferogram on a computer monitor. In this study, the experimental results of a canti-levered plate using ESPI were compared with those obtained from the simple beam theory. The ESPI results of the canti-levered plate analyzed by 4-step phase shifting method are close to the theoretical expectation. Also, out-0of-plane displacements of a spot welded canti-levered plate were measured by ESPI with 4-step phase shifting technique. The phase map of the spot welded canti-levered plate is quite different from that of the canti-levered plate without spot welding.

  • PDF

Super-Resolution Optical Fluctuation Imaging Using Speckle Illumination

  • Kim, Min-Kwan;Park, Chung-Hyun;Park, YongKeun;Cho, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.403.1-403.1
    • /
    • 2014
  • In conventional far-field microscopy, two objects separated closer than approximately half of an emission wavelength cannot be resolved, because of the fundamental limitation known as Abbe's diffraction limit. During the last decade, several super-resolution methods have been developed to overcome the diffraction limit in optical imaging. Among them, super-resolution optical fluctuation imaging (SOFI) developed by Dertinger et al [1], employs the statistical analysis of temporal fluorescence fluctuations induced by blinking phenomena in fluorophores. SOFI is a simple and versatile method for super-resolution imaging. However, due to the uncontrollable blinking of fluorophores, there are some limitations to using SOFI for several applications, including the limitations of available blinking fluorophores for SOFI, a requirement of using a high-speed camera, and a low signal-to-noise ratio. To solve these limitations, we present a new approach combining SOFI with speckle pattern illumination to create illumination-induced optical fluctuation instead of blinking fluctuation of fluorophore.. This technique effectively overcome the limitations of the conventional SOFI since illumination-induced optical fluctuation is possible to control unlike blinking phenomena of fluorophore. And we present the sub-diffraction resolution image using SOFI with speckle illumination.

  • PDF

고온하의 CW 레이져 스페클 사진법과 화상처리에 의한 열팽창계수 측정에 관한 연구 (Measurement of Thermal Coefficient at High Temperature by CW-Laser Speckle Photography and Image Processing)

  • 김경석;최정석
    • 한국정밀공학회지
    • /
    • 제9권4호
    • /
    • pp.90-99
    • /
    • 1992
  • In resent year Laser Speckle and its development have enabled surface deformation of engineering components and materials to be interferometrically examined. Laser Speckle- Pettern Interferometry Method is a very useful method for measuring In-plane components of displacement. In measuring thermal expansion coefficient, the various problems generated were established, and the measuring limitation examined. Metarial INCONEL 601 was used in experiments. Specimen was heated to the high temperature(100$0^{\circ}C$) by diong current to the direct two specimen. Then, those problems appear to the influence of back-ground radiation by the heated specimen, the influence by air turbulence, the oxidation of specimen. The color monitor and interference filter prevented the back-ground radiation by rad heat. The oxidation occuring in specimen itself was not generated by the being acid-proof excellence of material INCONEL 601. Yet, in this experiments, the serious problems are the oxidation of specimen and influence by air turbulence. By more reserching these problems forward, it is helpful that the thermal expansion coefficient of many materials is directly measured under high temperature.

  • PDF

Optical-fiber Electronic Speckle Pattern Interferometry for Quantitative Measurement of Defects on Aluminum Liners in Composite Pressure Vessels

  • Kim, Seong Jong;Kang, Young June;Choi, Nak-Jung
    • Journal of the Optical Society of Korea
    • /
    • 제17권1호
    • /
    • pp.50-56
    • /
    • 2013
  • Optical-fiber electronic speckle pattern interferometry (ESPI) is a non-contact, non-destructive examination technique with the advantages of rapid measurement, high accuracy, and full-field measurement. The optical-fiber ESPI system used in this study was compact and portable with the advantages of easy set-up and signal acquisition. By suitably configuring the optical-fiber ESPI system, producing an image signal in a charge-coupled device camera, and periodically modulating beam phases, we obtained phase information from the speckle pattern using a four-step phase shifting algorithm. Moreover, we compared the actual defect size with that of interference fringes which appeared on a screen after calculating the pixel value according to the distance between the object and the CCD camera. Conventional methods of measuring defects are time-consuming and resource-intensive because the estimated values are relative. However, our simple method could quantitatively estimate the defect length by carrying out numerical analysis for obtaining values on the X-axis in a line profile. The results showed reliable values for average error rates and a decrease in the error rate with increasing defect length or pressure.

GPU-ACCELERATED SPECKLE MASKING RECONSTRUCTION ALGORITHM FOR HIGH-RESOLUTION SOLAR IMAGES

  • Zheng, Yanfang;Li, Xuebao;Tian, Huifeng;Zhang, Qiliang;Su, Chong;Shi, Lingyi;Zhou, Ta
    • 천문학회지
    • /
    • 제51권3호
    • /
    • pp.65-71
    • /
    • 2018
  • The near real-time speckle masking reconstruction technique has been developed to accelerate the processing of solar images to achieve high resolutions for ground-based solar telescopes. However, the reconstruction of solar subimages in such a speckle reconstruction is very time-consuming. We design and implement a new parallel speckle masking reconstruction algorithm based on the Compute Unified Device Architecture (CUDA) on General Purpose Graphics Processing Units (GPGPU). Tests are performed to validate the correctness of our program on NVIDIA GPGPU. Details of several parallel reconstruction steps are presented, and the parallel implementation between various modules shows a significant speed increase compared to the previous serial implementations. In addition, we present a comparison of runtimes across serial programs, the OpenMP-based method, and the new parallel method. The new parallel method shows a clear advantage for large scale data processing, and a speedup of around 9 to 10 is achieved in reconstructing one solar subimage of $256{\times}256pixels$. The speedup performance of the new parallel method exceeds that of OpenMP-based method overall. We conclude that the new parallel method would be of value, and contribute to real-time reconstruction of an entire solar image.

레이저스펙클 간섭법과 4단계 위상이동법에 의한 외팔보 점용접부의 면외 변위측정 (Measurement of Out-of-plane Displacement in a Spot Welded Canti-levered Plate using Laser Speckle Interferometry with 4-step Phase Shifting Technique)

  • 백태현;김명수;나의균;고승기
    • 한국정밀공학회지
    • /
    • 제19권3호
    • /
    • pp.66-72
    • /
    • 2002
  • Electronic Speckle Pattern Interferometry (ESPI) has been recently developed and widely used because it has advantage to be able to measure surface deformations of engineering components and materials in industrial areas with non-contact. The speckle patterns to be formed with interference and scattering phenomena can measure not only out-of-plane but also in-plane deformations, together with the use of digital image equipment to process the informations included in the speckle patterns and to display consequent interferogram on a computer monitor. In this study, the experimental results of a canti-levered plate using ESPI were compared with those obtained from the simple beam theory. The ESPI results of the canti-levered plate analyzed by 4-step phase shifting method are close to the theoretical expectation. Also, out-of-plane displacements of a spot welded cacti-levered plate were measured by ESPI with 4-step phase shifting technique. The phase map of the spot welded cacti-levered plate is quite different from that of the canti-levered plate without spot welding.

비정상 비대칭 기체 유동의 3차원 밀도 분포 분석을 위한 디지털 스펙클 토모그래피 기법의 신호 처리 기술 개발 (Development of Signal Processing Technique of Digital Speckle Tomography for Analysis of Three-Dimensional Density Distributions of Unsteady and Asymmetric Gas Flow)

  • 백승환;김용재;고한서
    • 비파괴검사학회지
    • /
    • 제26권2호
    • /
    • pp.108-114
    • /
    • 2006
  • 3차원 디지털 스펙클 토모그래피를 개발하여 레이저 영상 신호로부터 비정상, 비대칭 부탄 유동의 밀도분포를 분석하였다. 이러한 유동 해석을 위해 3가지 각도에서 CCD 영상으로부터 스펙클의 이동 신호를 획득하여 유동이 없을 때와 있을 때의 스펙클 변화를 상호 상관법에 의해 계산하였다. 이 때 스펙클의 이동 신호는 유동의 밀도 구배에 따라 굴절각으로 변환될 수 있다. 그 굴절각을 적분하여 광선의 주름 변이를 얻고 이로부터 실시간 곱셈산술재건법(MART)을 이용하여 부탄의 3차원 밀도장 재건을 수행하였다.

북스펙트럼 스펙클 영상법의 성능기준 (Performance Criterion of Bispectral Speckle Imaging Technique)

  • 조두진
    • 한국광학회지
    • /
    • 제4권1호
    • /
    • pp.28-35
    • /
    • 1993
  • 수차가 정확히 알려지지 않은 결상계에 있어서, exit pupil에 인위적인 위상의 random fluctuation을 도입하고 북스펙트럼 스펙클 영상법(bispectral speckle imaging)을 이용하므로서 수차의 효과를 극소화하여 거의 회절한계의 영상을 얻을 수 있다. Defocus, 구면수차, 코마수차, 비점수차가 각각 1파장씩 있을 때, 주어진 사용영상수(50개)에 대해서 Gaussian random phase model의 correlation length가 어느 정도일 때 최적의 결과를 얻을 수 있는지를 점 물체에 대해 컴퓨터 시뮬레이션을 시행하므로서 연구하였다. 평가기준으로서는 복원된 점물체에 대한 point spread function의 FWHM, normalized peak intensity, MTF 그리고 visual inspection을 채용하였는데, exit pupil 위에서 Fried parameter ${\Upsilon}_0$ 범위에 대한 수차의 차의 rms값 $\sigma$가 구면수차에 대해서는 0.27~0.53 파장일 때, defocus와 비점수차에 대해서는 0.24~0.36 파장일 때, 좋은 결과를 주는 것으로 나타났고, 코마수차의 경우에는 좋은 결과를 얻을 수 없었다.

  • PDF