• Title/Summary/Keyword: specified recurrence interval discharge

Search Result 4, Processing Time 0.018 seconds

Channel-forming Discharge Evaluation for Rivers with High Coefficients of River Regime (하상계수가 큰 하천의 하도형성유량 산정)

  • Ji, Un;Jang, Eun Kyung;Yeo, Woon Kwang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4B
    • /
    • pp.361-367
    • /
    • 2011
  • The channel-forming discharge, which is a standard and single flow for the river maintenance and restoration project, should be estimated necessarily in the stable channel design. It is difficult to produce the specific pattern for the channel-forming discharge in the domestic rivers due to the insufficient researches and case studies. Also, it is improper to adopt the foreign cases for the domestic rivers and streams which have the high coefficients of river regime. Therefore, the channel-forming discharge possible to use for rivers with high coefficients of river regime is suggested in this study through analyzing the bankfull, specified recurrence interval, and effective discharges of Mangyeong River, Cheongmi Stream, and Hampyeong Stream for the abandoned channel restoration project. The bankfull discharge was calculated with geometric data using the HEC-RAS modeling and the flow, bed materials, and sediment data for the study reaches were used to estimate the specified recurrence interval and effective discharges. As a result for calculating the channel-forming discharge, the effective discharge was greater than the bankfull discharge in the river with high coefficient of river regime and the effective discharge was greater than the bankfull and there was no correlation between the coefficient of river regime and the characteristics of the specified recurrence interval discharges.

Evaluation of Channel-forming Discharge for the Abandoned Channel Restoration Design of Cheongmi Stream (청미천 구하도 복원 설계를 위한 하도형성유량 산정)

  • Ji, Un;Kang, Jun-Gu;Yeo, Woon-Kwang;Han, Seung-Won
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.12
    • /
    • pp.1113-1124
    • /
    • 2009
  • The abandoned channel restoration is one of methods to enhance the environmental function and ecological habitat as well as the functions of water-utilization and flood control. The channel-forming or dominant discharge must be evaluated and defined to design the cross-sectional and plane geometries of the stable and equilibrium channel for the abandoned channel restoration project. In general, bankfull discharge, specified recurrence interval discharge, and effective discharge have been used to decide the channel-forming discharge. In this study, bankfull discharge, specified recurrence interval discharge, and effective discharge were calculated and compared for the abandoned channel restoration site of Cheongmi Stream and their relations to historical bed changes were analyzed. The bankfull discharge, 488 $m^3/s$, of the abandoned channel restoration site of Cheongmi Stream was calculated using HEC-RAS data and ranged between 1.5-year and 2-year recurrence discharges. Also, the effective discharge evaluated with the sediment rating curve and mean daily discharge data is greater than the bankfull discharge. According to the survey data of 1994 and 2008, the bed elevation of the study reach was decreased over time. It is indicated that the channel bed is changing to the stable condition to allow the effective discharge.

A Study on the Channel forming Discharge Estimation and the Hydraulic Geometry Characteristics of the Alluvial Stream (충적하천의 하도형성유량 산정과 수리기하특성에 관한 연구)

  • Lee, Hee-Chul;Lee, Eun-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.5
    • /
    • pp.823-838
    • /
    • 2003
  • For many rivers and streams, it has been observed that a single representative discharge may be used to determine the hydraulic geometry of a stable channel. This representative channel forming discharge has been given several names by different researchers, including bankfull, specified recurrence interval, and effective discharge. Therefore, The purpose of this study is to estimate channel forming discharge for study areas using the hydrological characteristic parameters and recording data, and to determine the hydraulic geometry relationships for the relating bankfull dimensions to bankfull discharge. In the Munmak and Seomyun gauging stations, the estimated bankfull discharges are found to have a return period of 1.8 and 1.5 years on the maximum annual series, respectively. The estimated effective discharges at those stations are largely different from bankfull discharges. The hydraulic geometry relationships between bankfull discharge and bankfull width, bankfull depth, velocity, bed slope are established. But the statistical parameters, such as R2, are calculated lower.

Channel-forming discharge calculation and stable channel section evaluation for downstream reach of Yeongju dam in Naesung stream (내성천의 영주댐 하류 구간의 하도형성유량 산정 및 안정하도 단면 평가)

  • Jang, Eun-Kyung;Ahn, Myeonghui;Ji, Un
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.3
    • /
    • pp.183-193
    • /
    • 2018
  • Channel-forming discharge for downstream section of Yeongju dam in Naesung stream was calculated to analyze stable channel geometry. Determined channel-forming discharge was applied to design stable channel slope, depth, and base width at Yonghyeol station. Used data for channel-forming discharge and stable channel analysis were collected in downstream section of Yeongju dam in Naesung stream before the dam construction. Specified recurrence interval discharge, effective discharge, and bankfull discharge were analyzed and compared to decide final channel-forming discharge which was $260m^3/s$ of bankfull discharge. Stable channel analysis and design program was applied to predict stable channel section of width, depth, and slope with various sediment transport equations of Ackers and White, Brownlie, Engelund and Hansen, and Yang's equations. As a result, all equations of sediment transport produced milder slopes compared to current bed slope of 0.00177 and Ackers and White equation presented the most similar flow depth of current section with the design constraint of current channel width.