• Title/Summary/Keyword: specific yield

Search Result 1,090, Processing Time 0.033 seconds

DETERMINATION OF MOISTURE AND NITROGEN ON UNDRIED FORAGES BY NEAR INFRARED REFLECTANCE SPECTROSCOPY(NIRS)

  • Cozzolino, D.;Labandera, M.;Inia La Estanzuela
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1620-1620
    • /
    • 2001
  • Forages, both grazed and conserved, provide the basis of ruminant production systems throughout the world. More than 90 per cent of the feed energy consumed by herbivorous animals world - wide were provided by forages. With such world - wide dependence on forages, the economic and nutritional necessity of been able to characterize them in a meaningful way is vital. The characterization of forages for productive animals is becoming important for several reasons. Relative to conventional laboratory procedures, Near Infrared Reflectance Spectroscopy (NIRS) offers advantages of simplicity, speed, reduced chemical waste, and more cost-effective prediction of product functionality. NIR spectroscopy represents a radical departure from conventional analytical methods, in that entire sample of forage is characterized in terms of its absorption properties in the near infrared region, rather than separate subsamples being treated with various chemicals to isolate specific components. This forces the analyst to abandon his/her traditional narrow focus on the sample (one analyte at a time) and to take a broader view of the relationship between components within the sample and between the sample and the population from which it comes. forage is usually analysed by NIRS in dry and ground presentation. Initial success of NIRS analysis of coarse forages suggest a need to better understand the potential for analysis of minimally processed samples. Preparation costs and possible compositional alterations could be reduced by samples presented to the instrument in undried and unground conditions. NIRS has gained widespread acceptance for the analysis of forage quality constituents on dry material, however little attention has been given to the use of NIRS for chemical determinations on undried and unground forages. Relatively few works reported the use of NIRS to determine quality parameters on undried materials, most of them on both grass and corn silage. Only two works have been found on the determination of quality parameters on fresh forages. The objectives of this paper were (1) to evaluate the use of NIRS for determination of nitrogen and moisture on undried and unground forage samples and (2) to explore two mathematical treatments and two NIR regions to predict chemical parameters on fresh forage. Four hundred forage samples (n: 400) were analysed in a NIRS 6500 instrument (NIR Systems, PA, USA) in reflectance mode. Two mathematical treatments were applied: 1,4,4,1 and 2,5,5,2. Predictive equations were developed using modified partial least squares (MPLS) with internal cross - validation. Coefficient of determination in calibration (${R^2}_{CAL}$) and standard error in cross-validation (SECV) for moisture were 0.92 (12.4) and 0.92 (12.4) for 1,4,4,1 and 2,5,5,2 respectively, on g $kg^{-1}$ dry weight. For crude protein NIRS calibration statistics yield a (${R^2}_{CAL}$) and (SECV) of 0.85 (19.8) and 0.85 (19.6) for 1,4,4,1 and 2,5,5,2 respectively, on a dry weight. It was concluded that NIRS is a suitable method to predict moisture and nitrogen on fresh forage without samples preparation.

  • PDF

Studies on the Hesperidinase of Aspergillus niger S-1 (Aspergillus niger S-1이 생산하는 Hesperidin 분해효소에 관한 연구)

  • 기우경
    • Microbiology and Biotechnology Letters
    • /
    • v.4 no.4
    • /
    • pp.131-137
    • /
    • 1976
  • Aspergillus niger S-1 was proved to be a good hesperidinase producer which have been selected for naringinase utilization. Enzyme of this strain had good characteristics and purified relative high degree with good recovery by ammonium sulfate or aceton treatment. Results obtained were summarized as follows (1) The enzyme was most active at 60$^{\circ}C$, when the reaction was performed in the pH 4.0 for 30min. Optimum pH for enzyme activity was 5.0 and activity was retained 78% at pH value 3.5. (2) Hesperidinase activity retained 95% of its full activity after treatment at 60$^{\circ}C$ for 30min at pH value 4.0., 70% at 70$^{\circ}C$ and 65% at 80$^{\circ}C$. Most stable pH of this enzyme was showed 5.0 after treatment for 24hr at 4$^{\circ}C$ (3) Only Magnesium ion activated enzyme reaction, while other metallic ions, Cu$\^$++/, Mn$\^$++/, Pb$\^$++/, Mo$\^$++/, Ag$\^$++/, Hg$\^$++/ inhibited. (4) Eleven fold purification with 35% recovery was obtained in the case of 60% aceton treatment and 10-fold purification with 5.6% recovery was showed with 40% aceton comparing to the crude extract Enzyme. (5) Crude enzyme precipitated with 0.4-0.6 saturated ammonium sulfate contained 13f6 of the original enzyme activity with 48-fold increase in specific activity and enzyme has been purified 25 fold with a yield 19% by 0.6-5.8 saturation. (6) Hesperidinase formation was noticeably increased by addition of small amount of orange-peel extraction on the wheat bran medium.

  • PDF

Properties of White Pan Breads made with Korean and Imported Wheat Flours (식빵제조를 위한 국산 및 수입 밀가루의 적성에 대한 연구)

  • Jang, Heag-Rea;Park, Jung-Suk;Shin, Sol;Shin, Gil-Man
    • Food Science and Preservation
    • /
    • v.15 no.6
    • /
    • pp.884-890
    • /
    • 2008
  • This study was conducted to investigate the quality of white pan breads baked with various Korean and imported wheat flours. The approximate composition of the Korean wheat flour was 12.0614.06% moisture, 11.8314.02% crude protein, and 0.320.54% crude ash. Relative to the Korean wheat flour, the moisture and crude protein contents of imported wheat flour were lower, and the crude ash content was higher. The pH of white pan bread was lowest with imported wheat flour and highest with H.Y woorimil. The color L and a values in the crumb were lower with imported wheat flour than with Korean wheat flour. The volume and height of dough was lowest with G.S woorimil, and the specific volume and yield of dough was highest with K.K woorimil. The baking loss rate of bread was highest with G.R woorimil and lowest with G.S woorimil. In texture characteristics, hardness was lower and chewiness, adhesiveness, springiness and cohesiveness were higher with imported wheat flour than with Korean wheat flour. In the sensory evaluation, breads made with Korean wheat flour were superior in taste and flavor to bread made with imported wheat flour.

Proteolytic Digestion of Boiled Pork by Soused Shrimp (새우젓 중의 단백질 분해효소에 대한 연구)

  • 박길홍
    • Journal of Nutrition and Health
    • /
    • v.19 no.6
    • /
    • pp.363-373
    • /
    • 1986
  • This study was devised to elucidate whether soused shrimp exhibits a digestive action on boiled pork meats. and the mechanism by which sousing with a high concentration of sodium chloride preserves nutrients in foods for a prolonged pe\ulcornerriod. Protease was isolated from soused shrimp using a combination of ammonium sulfate fractionation. DEAE - cellulose ion exchange chromatography and gel filtra\ulcornertion. The isolated protease had specific activity of 1.560 units. 210 purification fo\ulcornerld with an yield of 38%. Its optimum pH and temperature were 8.0 and $43^{\circ}C$ respectively. The molecular weight of the enzyme was 35.000. The Km value of the enzyme for casein was 1.6 x $10^{-6}$ M The e=yme required the presence of cu\ulcornerpric ion to exhibit its full activity. Eighty eight percent of the enzyme activity was in\ulcornerhibited by 3.5M NaCI showing a reversibly linear decrease of the enzyme activity as NaCI concentration increased. The nature of the inhibition by NaCl was rever\ulcornersible and noncompetitive. The protease activity in soused shrimp was well preser\ulcornerved with the elapse of time at least in part due to NaCI induced suppression of autodigestion. The enzyme was denatured by acid easily. i.e. 1% of the original activity remained after staying at pH 2 for 10 minutes. which is within the norm\ulcorneral range of pH of the human stomach. Soused shrimp was observed to be one of those containing the highest protease activity compared with the other soused foo\ulcornerds such as soused oyster. squid. clam. and Pollack intestine with respect to spec\ulcornerific activities of dialized 1:4 whole homogenates(w/v) in 5 mM sodium phospha\ulcornerte - 2.4 mM j3 - mercaptoethanol buffer. pH 8.0. Casein and boiled meats including pork, beef, and chicken appeared to be the good substrates for the protease. Casein was the best. Therefore. the ingestion of boiled meats including pork together with soused sh\ulcornerrimp would help digestion of boiled pork in human not only by increasing appe\ulcornertite also by the direct proteolytic digestion of boiled meats by soused shrimp to\ulcorner some extent. And a high concentration of sodium chloride inhibited the protease activity reversibly in a remarkable degree, which ensued in a significant retardat\ulcornerion of autodigestion of protein in foods by proteases, and hereby contributed to the preservation of foods for an extended period.

  • PDF

Development of Radiation Free Soft X-Ray Ionizer with Ion Control (완전차폐 및 이온조절형 연X선식 정전기제거장치의 개발)

  • Jeong, Phil Hoon;Lee, Dong Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.22-27
    • /
    • 2016
  • The Electrostatic Charge Prevention Technology is a core factor that highly influences the yield of Ultra High Resolution Flat Panel Display and high-integrated semiconductor manufacturing processes. The corona or x-ray ionizations are commonly used in order to eliminate static charges during manufacturing processes. To develop such a revolutionary x-ray ionizer that is free of x-ray radiation and has function to control the volume of ion formation simultaneously is a goal of this research and it absolutely overcomes the current risks of x-ray ionization. Under the International Commission on Radiological Protection, it must have a leakage radiation level that should be lower than a recommended level that is $1{\mu}Sv/hour$. In this research, the new generation of x-ray ionizer can easily control both the volume of ion formation and the leakage radiation level at the same time. In the research, the test constraints were set and the descriptions are as below; First, In order not to leak x-ray radiation while testing, the shielding box was fully installed around the test equipment area. Second, Implement the metallic Ring Electrode along a tube window and applied zero to ${\pm}8kV$ with respect to manage the positive and negative ions formation. Lastly, the ion duty ratio was able to be controlled in different test set-ups along with a free x-ray leakage through the metallic Ring Electrode. In the result of experiment, the maximum x-ray radiation leakage was $0.2{\mu}Sv/h$. These outcome is lower than the ICRP 103 recommended value, which is $1{\mu}Sv/h$. When applying voltage to the metallic ring electrode, the positive decay time was 2.18s at the distance of 300 mm and its slope was 0.272. In addition, the negative decay time was 2.1s at the distance of 300 mm and its slope was 0.262. At the distance of 200 mm, the positive decay time was 2.29s and its slope was 0.286. The negative decay time was 2.35s and its slope was 0.293. At the distance of 100 mm, the positive decay time was 2.71s and its slope was 0.338. The negative decay time was 3.07s and its slope was 0.383. According to these research, the observation was shown that these new concept of ionizer is able to minimize the leakage radiation level and to control the positive and negative ion duty ratio while ionization.

The Comparison of Growth and Quality Characteristics during the Storage of Pleurotus ostreatus Cultivated in the Remnants of Medicinal Herb Extracts (한약박에서 재배한 느타리버섯의 성장 및 저장 중 품질 특성의 비교)

  • Jun, Jung-Ho;Ko, Byoung-Seob;Kim, Ju-Ho;Nam, Sang-Pil;Um, Young-Ran;Hong, Sang-Mee;Hwang, Hak-Soo;Park, Sun-Min
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.2
    • /
    • pp.211-216
    • /
    • 2009
  • This study was conducted to determine whether Pleurotus ostreatus (oyster mushroom), cultivated in various ratios with herbal extract remnants instead of cotton supplemented with nutrients (the control), improved mycelial growth, mushroom yields and longevity during storage. In addition, we investigated the transfer of medicinal herb components into the mushrooms since they contained non-specific medicinal herbs and their composition could not be controlled. Mushrooms cultivated with 70% and 100% medicinal herb remnants had faster growth rates, higher yields and less failure in the development of the fruit body than the control group. There were no differences in HPLC chromatogram among the methanol extracts of Pleurotus ostreatus in all groups. In addition, glycyrrhizin, an indicative compound of licorice which was a major herb among the herbal remnants, was not detected in any of the extracts. Pleurotus ostreatus that was cultivated with 70% and 100% herbal extract remnants had improved storage longevity in comparison with the control. They exhibited the least weight loss during storage among the groups and they maintained firmness in the stipe and pileus. However, the sources of media did not alter the color difference of the stipe and pileus or the quality index of the outward appearance during storage. In conclusion, cultivating media that contained over 70% of medicinal herb extract remnants increased the growth rates and yields of Pleurotus ostreatus. In addition, these mushrooms had enhanced storage longevity due to their firmness. Therefore, medicinal herb extract remnants should be utilized in the cultivating media of various mushrooms.

Intensive land-based production of red and green macroalgae for human consumption in the Pacific Northwest: an evaluation of seasonal growth, yield, nutritional composition, and contaminant levels

  • Gadberry, Bradley A.;Colt, John;Maynard, Desmond;Boratyn, Diane C.;Webb, Ken;Johnson, Ronald B.;Saunders, Gary W.;Boyer, Richard H.
    • ALGAE
    • /
    • v.33 no.1
    • /
    • pp.109-125
    • /
    • 2018
  • Turkish towel (Chondracanthus exasperatus), Pacific dulse (Palmaria mollis, also known as Red ribbon seaweed), and sea lettuce (Ulva spp.) were cultivated in a land-based intensive culture system at the Manchester Research Station, USA from August 2013 to September 2014. Macroalgae were grown in tumble-aerated tanks, harvested bimonthly for seasonal growth calculations, and analyzed for protein, lipid, ash, and amino acid content. Growth rate of all three species exhibited a similar pattern, with the highest specific growth rates occurring during the summer months (Turkish towel: 7.8%, Pacific dulse: 8.2%, and sea lettuce: 6.2%). Growth of all three species was lowest around winter solstice; with negative growth only observed in sea lettuce. On a dry weight basis significant differences in protein content existed between the three species with highest values for sea lettuce ($29.5{\pm}1.4%$). Lipid content varied between species (0.95-2.78%) with significantly higher lipid observed in sea lettuce (0.58-4.82%). No significant differences were detected on a seasonal basis among each species. Essential amino acids accounted for $43{\pm}0.9$ to $47{\pm}1.2%$ of total amino acids with Turkish towel having the highest value. Turkish towel had a significantly higher taurine level ($0.82{\pm}0.27$) than the other macroalgae. The levels of persistent organic pollutants and heavy metals were low. The estimated annual product of the three species ranged from 50- to $70-mt\;dry\;weight\;ha^{-1}\;y^{-1}$, significantly higher than conventional crops. Land-based culture of these species can produce year-round harvest, consistent product quality, and low contaminant levels.

Utilization of cyclohexanol and characterization of Acinetobacter calcoaceticus C-15 (Acinetobacter calcoaceticus C-15에 의한 Cyclohexanol의 이용 및 그 특성)

  • Kim, Kyung Ae;Park, Jong Sung;Rhee, In Koo
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.1
    • /
    • pp.71-77
    • /
    • 1985
  • A bacterium which grows on cyclohexanol as sole carbon and energy source was isolated from sludge of industrial areas in Taegu and identified as Acinetobacter calcoaceticus C-15. The growth medium for the optimal culture condition was composed of 0.2% cyclohexanol, 0.11% $NH_4Cl$, 0.05% $KH_2PO_4$, 0.2% $K_2HPO_4$, 0.02% $MgSO_4{\cdot}7H_2O$, and 0.05% yeast extracts. The optimal pH value and temperature for the growth were 7.2 and $33^{\circ}C$, respectively. Specific growth rate of A. calcoaceticus C-15 at $33^{\circ}C$ on the cyclohexanol and cyclohexanone was $0.27hr^{-1}$ and $0.15hr^{-1}$, respectively. Growth yield for cyclohexanol was 1.0. The bacteria utilized ethanol, 1-butanol, 1-pentanol, and cyclohexanol as a carbon source but not methanol, 1-hexanol, m-cresol, glycerol, and cyclohexane. The bacteria grew on benzoate, adipate, acetate, and citrate, but did not on salicylate, phthalate, p-hydroxybenzoate, and gluconate. A calcoaceticus C-15 did not utilize all kind of sugars other than xylose. Cell-free extracts contained $NAD^+$-linked cyclohexanol dehydrogenase which catalized the oxidation of cyclohexanol to cyclohexanone.

  • PDF

Environmental Effect on the Biodegradation of Toluene by Pseudomonas fluorescence KNU417 (원유오염 토양으로부터 분리한 Pseudomonas fluorescence KNU417의 톨루엔 분해에서 환경 인자의 영향)

  • Kwon, Hyeok-Man;Yeom, Sung-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.3
    • /
    • pp.117-125
    • /
    • 2006
  • A microorganism capable of degrading toluene was isolated from crude oil contaminated soil and identified as Pseudomonas fluorescence. The effects of environmental factors on the degradation of toluene were investigated. The optimum temperature for toluene degradation was $30^{\circ}C$ and the maximum specific cell growth and toluene degradation rates were $0.76hr^{-1}$ and $0.36hr^{-1}$, respectively. Although the wild cells were not able to degrade toluene at $10^{\circ}C$ and $40^{\circ}C$, the cells adapted to toluene at $30^{\circ}C$ degraded 100mg/L of toluene completely at $10^{\circ}C$ and 80% of the toluene at $40^{\circ}C$. The wild cells were not able to degrade more than 200mg/L of toluene but the toluene-adapted cells degraded up to 300mg/L of toluene. Although the optimum pH was 7.0, the degradation rates were not much different in the range of 5.5 to 9.0. When nitrate was used as a nitrogen source instead of ammonium, the adaptation period became longer by 2~10 hours and the cell growth yield became lower by 45%. The toluene degradation rates after adaptation period, however, were almost same in both cases. The observations in this study will be used in the future biofilter design and operation.

  • PDF

Effects of Dissolved Oxygen Level on Avermectin $B_{1a}$ Production by Streptomyces avermitilis in Computer-Controlled Bioreactor Cultures

  • Song, Sung-Ki;Jeong, Yong-Seob;Kim, Pyeung-Hyeun;Chun, Gie-Taek
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1690-1698
    • /
    • 2006
  • In order to investigate the effect of dissolved oxygen (DO) level on AVM $B_{1a}$ production by a high yielding mutant of Streptomyces avermitilis, five sets of bioreactor cultures were performed under variously controlled DO levels. Using an online computer control system, the agitation speed and aeration rate were automatically controlled in an adaptive manner, responding timely to the oxygen requirement of the producer microorganism. In the two cultures of DO limitation, the onset of AVM $B_{1a}$ biosynthesis was observed to casually coincide with the fermentation time when oxygen-limited conditions were overcome by the producing microorganism. In contrast, this phenomenon did not occur in the parallel fermentations with DO levels controlled at around 30% and 40% throughout the entire fermentation period, showing an almost growth-associated mode of AVM $B_{1a}$ production: AVM $B_{1a}$ biosynthesis under the environments of high DO levels started much earlier than the corresponding oxygen-limited cultures, leading to a significant enhancement of AVM $B_{1a}$ production during the exponential stage. Consequently, approximately 6-fold and 9-fold increases in the final AVM $B_{1a}$ production were obtained in 30% and 40% DO-controlled fermentations, respectively, especially when compared with the culture of severe DO limitation (the culture with 0% DO level during the exponential phase). The production yield ($Y_{p/x}$), volumetric production rate (Qp), and specific production rate (${\bar{q}}_p$) of the 40% DO-controlled culture were observed to be 14%, 15%, and 15% higher, respectively, than those of the parallel cultures that were performed under an excessive agitation speed (350 rpm) and aeration rate (1 vvm) to maintain sufficiently high DO levels throughout the entire fermentation period. These results suggest that high shear damage of the high-yielding strain due to an excessive agitation speed is the primary reason for the reduction of the AVM $B_{1a}$ biosynthetic capability of the producer. As for the cell growth, exponential growth patterns during the initial 3 days were observed in the fermentations of sufficient DO levels, whereas almost linear patterns of cell growth were observed in the other two cultures of DO limitation during the identical period, resulting in apparently lower amounts of DCW. These results led us to conclude that maintenance of optimum DO levels, but not too high to cause potential shear damage on the producer, was crucial not only for the cell growth, but also for the enhanced production of AVM $B_{1a}$ by the filamentous mycelial cells of Streptomyces avermitilis.