• Title/Summary/Keyword: specific strength

Search Result 1,719, Processing Time 0.027 seconds

A Study on Design of High Early Strength Cement and Concrete for Road Way Pavements (신속개방형 콘크리트 도로포장재의 설계를 위한 실험실적 평가 연구)

  • 임채용;엄태선;신국재;이종열;엄주용;조윤호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.295-300
    • /
    • 2001
  • In road pavements, it is known that cement concrete pavement has superior durability, safety in compared with asphalt concrete pavement. But in reparing pavement cement concrete pavement is not usually applied because of the length of time while the road is interrupted when using Ordinary and Rapid-hardening Portland Cement. And Super High Early Strength Cement and Ultra Super High Early Strength Cement are not favorable for ready mixied concrete because of rapid setting time, high slump loss and other restrictions. We aim to develope specific cement and concrete developing 1 day strength of over 300 kg/$cm^{2}$ to open the road within one day and workable time is maintained over 1 hour that can be used as ready mixed concrete. In this study, we Produced cement using rapid-hardening cement, Hauyne clinker, anhydride gypsum and accelerator and studied on its properties. The concrete strength was over 300 kg/$cm^{2}$ at 1 day and 550 kg/$cm^{2}$ at 28 day and workable time was maintained for over 1 hour.

  • PDF

Effect of matrix on fatigue strength of carbon fiber composite materials (탄소섬유강화 복합재료의 피로강도에 미치는 모재의 영향)

  • 유승원
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.113-121
    • /
    • 1992
  • In this study, the variation of fatigue strength in CF/PEEK and CF/EPOXY, the matrix and interfacial strength of which differ from each other, has been studied from the viewpoint of microfracture behavior. The results obtained are as follows; According as the fatigue strength moves from the lower cycle range to the higher cycle range, that of CF/PEEK shows higher curve than that of CF/EPOXY does. In the early stage of fatigue life, the characteristic of fatigue crack in CF/PEEK is mainly the fracture of longitudinal fiber, while that in CF/EPOXY is the fracture of transverse fiber. The difference of fatigue strength in these materials can be explained by the fracture criteria of transverse fiber and longitudinal fiber.

  • PDF

Study on the Fluidity and Strength Properties of High Performance Concrete Utilizing Crushed Sand

  • Park, Sangjun
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.4
    • /
    • pp.231-237
    • /
    • 2012
  • Recently, it has been difficult to get natural sand for concrete due to an insufficient supply in Korea. Crushed sand was thought as a substitute and previous research has been focused on low fluidity and normal compressive strength (24-30 MPa). Study on high performance concrete using crushed sand is hardly found in Korea. In this study it was investigated that the effect of the crushed sand on fluidity and compressive strength properties of high performance concrete. Blending crushed sand (FM: 3.98) produced in Namyangju, Kyunggido and sea sand (FM: 2.80) produced in Asan bay in Chungnam. The final FMs of fine aggregate were 3.50, 3.23, and 3.08. W/B was set as 0.25 to get high performance. With the test results an analysis of relationship was performed using a statistical program. It was shown that strength property of concrete using crushed aggregate at the very early age or after specific time was mainly affected by strength development properties of binders instead of the crushed sand.

An Experimental Study on the Physical Properties Model of High Strength Concrete at High Temperature (고온시 고강도 콘크리트의 물리적 특성 모델 설정에 관한 실험적 연구)

  • Kim Heung-Yaul;Seo Chee-Ho;Choi Seng-Kwan;Jeon Hyun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.1-4
    • /
    • 2005
  • This research is to present experimental materials model of high strength concrete for prediction of fire safety of structural members based on physical properties of materials during heating up to 800$^{circ}C$. The following conclusions are drawn from this study. First of all, between 100 to 200 $^{circ}C$, the physical models of concrete such as specific heat and thermal conductivity, show visible degradation, regardless of concrete strength. Second, between 300 to 600$^{circ}C$, the physical models of the 29MPa and 49MPa concrete show degradation continually at these temperatures. Finally, beyond 600$^{circ}C$, the physical models of 49MPa strength concrete show larger degradation than 29MPa strength concrete due to rise of pore pressure and melting of the interface between aggregate and cement paste.

  • PDF

Bearing Strength of Steel Coupling Beams-Wall Connections depending upon Joint Details (접합부 상세에 따른 철골 커플링 보-벽체 접합부의 지압강도)

  • Park Wan-Shin;Yun Hyun-Do;Han Byung-Chan;Hwang Sun-Kyung;Yang Il-Seong;Kim Sun-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.113-116
    • /
    • 2004
  • No specific guidelines are for computing the shear strength of steel coupling beam connections embedded in the reinforced concrete shear wall. In this paper, a theoretical study of the strength of hybrid coupled shear wall connections is achieved. The bearing stress at failure in the concrete below the steel coupling beam section is related to the concrete compressive strength and the ratio of the width of the steel coupling beam section to the thickness of the hybrid coupled shear wall. To revise factor affecting shear transfer strength across connections between coupled shear walls and steel coupling beam, experimental studies are achieved. The main test variables were auxiliary details of stud bolts. In this studies, these proposed equations are shown to be in good agreement with the test results reported in the paper and with other test data in the literature.

  • PDF

A Study on Improving Fatigue Life for Composite Cylinder with Seamless Integrated Liner (이음매 없는 일체형 라이너를 갖는 복합재 압력용기의 피로수명 향상에 대한 연구)

  • Kim, Hyo-Joon
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.46-51
    • /
    • 2013
  • Composite cylinder is used by hydrogen fuel cell vehicles and natural gas vehicles because of high specific modulus, specific strength and fatigue resistance. composite cylinder has a seamless integrated liner and it is fully overwrapped with structural fibers of high strength carbon fibers in an epoxy matrix. In this study, filament winding pattern and autofrettage pressure design technique are presented considering structural weakness of knuckle and compressive residual stress. Presented methodology is verified by pressure cycling test of composite cylinders.

A Study on the Machinability of Ti-6Al-4V Alloy (Ti-6Al-4V합금의 절삭성에 관한 연구)

  • Park, Jong-Nam;Kim, Jae-Yoel;Cho, Gyu-Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.128-133
    • /
    • 2010
  • The Titanium has many superior characteristics which are specific strength, heat resistance, corrosion resistance, organism compatibility, non-magnetic and etc. and their quantity are abundant. this study performed turning operation of Ti-6Al-4V alloy using the TiAlN Coated Tool which treated Physical Vapor Deposition. Experimental works are also executed to measure cutting force, tool wear, chip figuration and surface roughness for different cutting conditions. As a result of study. Cutting depth influences on the cutting force much more than the feed rate and the value of the cutting force is the most stable at the depth of 1.0mm. And tool wear was serious at over 100m/min of cutting speed and cutting condition was excellent at 1.0mm of cutting depth.

AE Characteristics for Fracture Mechanism of Al 7075/CFRP Hybrid Composite (Al 7075/CFRP Hybrid 복합재료의 파손특성에 대한 AE 특성 연구)

  • 이진경;이준현;송상헌;윤한기
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.268-271
    • /
    • 2001
  • When compared to other composite materials such as FRP and MMC, hybrid composite material is more attractive one due to the high specific strength and the resistance to fatigue. However, the fracture mechanism of hybrid composite material is extremely complicated because of the bonding structure of metals and FRP. Recently, nondestructive technique has been used to evaluate the fracture mechanism of these composite materials. In this study, AE technique has been used to clarify the fracture mechanism and the degree of damage for Al 7075/CFRP hybrid composite material. It was found that AE event, energy and amplitude among AE parameters were effective to evaluate fracture process of Al 7075/CFRP composite material. In addition, the relationship between the AE signal and the characteristics of failure surface using optical microscope was discussed.

  • PDF

A Study on the Chip Treatment of Ti-6Al-4V Alloy in Turning processing (Ti-6Al-4V 합금의 선삭가공시 칩처리성에 관한 연구)

  • Park J.N.;Lee S.C.;Cho G.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1551-1554
    • /
    • 2005
  • The Titanium has many superior characteristics Which are specific strength, heat resistance, corrosion resistance, organism compatibility, non-magnetic and etc. and their quantity are abundant. this study performed turning operation of Ti-6Al-4V alloy using the TiAlN Coate Tool which treated PVD (Physical Vapor Deposition). Experimental works are also executed to measure cutting force, chip figuration and surface roughness for different cutting conditions. As a result of study. Tool wear was serious at over 100m/min of cutting speed and cutting condition was excellent at 1.0mm of cutting depth.

  • PDF

Characteristics of compressive strength of hardening used by fly ash and waste lime (다량의 폐석회와 석탄회를 이용한 경화체의 강도적 특성)

  • 고대형;이정재;박응모;문경주;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.653-658
    • /
    • 2001
  • The purpose of this study is to evaluate the compressive strength properties of hardening using the unrefined fly-ash and waste lime and to offer basic data to someone for recycling waste lime Waste limes are tested that specific gravity and pH value and observed microstructure of particle with SEM. The compressive strengths of Wast lime hardening which is mixed with regular ratio according to each admixture are measured. In the results of test, The pH of wast lime is very high by pH 12.1 and specific gravity is 2.22. Compressive strengths on hardening modified waste lime and fly ash is very effective. The vest compressive strengths is show that CaCl$_2$ existed in waste lime

  • PDF