• Title/Summary/Keyword: specific modulus

Search Result 268, Processing Time 0.03 seconds

Recycling of Chilled Converter Slag as Aggregate in Cement Mortar (급랭 진로슬래그 모르타르 골재 재활용 특성)

  • Kim, Tae Heui;Park, Kyung Bong
    • Clean Technology
    • /
    • v.12 no.4
    • /
    • pp.238-243
    • /
    • 2006
  • The aggregate properties of chilled converter slag reformed by atomizing liquid converter slag were investigated. The properties of mortars with various replacement of standard sand by chilled converter slag as recycled fine aggregates were investigated. The particle shape of chilled converter slag by atomizing was a sphere with an open cavity which is enclosed with two layers like a bored coconut. Specific gravity, unit weight and fineness modulus increased with increasing the replacement, and solid content had the maximum at the replacement of 75% and water absorption rate had the minimum at the replacement. The hardened mortars with higher replacements have the higher specific gravity and the denser texture.

  • PDF

Plane waves in an anisotropic thermoelastic

  • Lata, Parveen;Kumar, Rajneesh;Sharma, Nidhi
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.567-587
    • /
    • 2016
  • The present investigation is to study the plane wave propagation and reflection of plane waves in a homogeneous transversely isotropic magnetothermoelastic medium with two temperature and rotation in the context of GN Type-II and Type-III (1993) theory of thermoelasticity. It is found that, for two dimensional assumed model, there exist three types of coupled longitudinal waves, namely quasi-longitudinal wave (QL), quasi-transverse wave (QTS) and quasi-thermal waves (QT). The different characteristics of waves like phase velocity, attenuation coefficients, specific loss and penetration depth are computed numerically and depicted graphically. The phenomenon of reflection coefficients due to quasi-waves at a plane stress free with thermally insulated boundary is investigated. The ratios of the linear algebraic equations. These amplitude ratios are used further to calculate the shares of different scattered waves in the energy of incident wave. The modulus of the amplitude and energy ratios with the angle of incidence are computed for a particular numerical model. The conservation of energy at the free surface is verified. The effect of energy dissipation and two temperatures on the energy ratios are depicted graphically and discussed. Some special cases of interest are also discussed.

The Absorbed Energy Characteristics of Gr/E Composite Tubes under Axial Collapse Load (축 압궤하중을 받는 Gr/E 복합재 튜브의 에너지 흡수특성)

  • 양현수;김영남;최흥환
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.2
    • /
    • pp.189-197
    • /
    • 2002
  • Composites have wide applications in aerospace vehicles and automobiles because of the inherent flexibility in their design lot improved material properties. Composite tubes in particular, are potential candidates for their use as energy absorbing elements in crashworthiness applications due to their high specific energy absorbing capacity and the stroke efficiency. Their failure mechanism however is highly complicated and rather difficult to analyze. This includes fracture in fibers, in the matrix and in the fiber-matrix interface in tension, compression and shear. The purpose of this study is to investigate the energy absorption characteristics of Gr/E(Graphite/Epoxy) tubes on static and impact tests. The collapse characteristics and energy absorption of a variety of tubes have been examined. Changes in the lay-up which increased the modulus increased the energy absorption of the tubes. Based on the test results, the following remarks can be made: Among CA15, CA00 and CA90 curves the CA90 tube exhibits the highest crush load throughout the whole crush process, and max load increases as interlaminar number increase. Among all the tubes type CC90 has the largest specific crushing stress of 52.60 kJ/kg which is much larger than other tubes.

A study on the development of living products using heat and color conversion treated woods (가열.재색변환처리 목재를 이용한 생활용품개발에 관한 연구)

  • Shin, Rang-Ho;Yoon, Suk-Hyun;Han, Tae-Hyung;Kwon, Jin-Heon
    • Journal of the Korea Furniture Society
    • /
    • v.20 no.5
    • /
    • pp.457-466
    • /
    • 2009
  • This study was carried out to investigate the physical and mechanical properties of 6 hardwoods before and after heat treatment in an effort to produce the high quality industrial lumber product. The results were as follows. Specific gravities of green woods were in range from 0.90 to 1.10. The specific gravities of never treated woods showed higher than those of the heat treated woods. The shrinkage of heat treated woods when green to air & oven dry was significantly low, compared to never treated woods. The compression strengths parallel to grain of heat treated woods showed higher than those of never treated woods. The moduli of rupture (MOR) of never treated and heat treated woods were $176.4N/mm^2{\sim}102.8N/mm^2$ and $100.1N/mm^2{\sim}61.2N/mm^2$ respectively. MORs of heat treated woods showed lower than those of never treated woods. There was no significant change in the modulus of elasticity (MOE) before and after heat treatment.

  • PDF

Structural stability of fire-resistant steel (FR490) H-section columns at elevated temperatures

  • Kwon, In-Kyu;Kwon, Young-Bong
    • Steel and Composite Structures
    • /
    • v.17 no.1
    • /
    • pp.105-121
    • /
    • 2014
  • A fundamental limitation of steel structures is the decrease in their load-bearing capacity at high temperatures in fire situations such that structural members may require some additional treatment for fire resistance. In this regard, this paper evaluates the structural stability of fire-resistant steel, introduced in the late 1999s, through tensile coupon tests and proposes some experimental equations for the yield stress, the elastic modulus, and specific heat. The surface temperature, deflection, and maximum stress of fire-resistant steel H-section columns were calculated using their own mechanical and thermal properties. According to a comparison of mechanical properties between fire-resistant steel and Eurocode 3, the former outperformed the latter, and based on a comparison of structural performance between fire-resistant steel and ordinary structural steel of equivalent mechanical properties at room temperature, the former had greater structural stability than the latter through $900^{\circ}C$.

자동차 조립공정에서의 작업자세 부하 평가 체계 구축

  • 정재원;정민근;김상호;이인석;이상민
    • Proceedings of the ESK Conference
    • /
    • 1998.04a
    • /
    • pp.36-39
    • /
    • 1998
  • In this study, the postural stresses in automobile assembly tasks were evaluated through an experiment. We had 19 subjects who simulated 42 different working postures occuring in the automobile assembly tasks for1 min and rated their whole body discomforts subjectively. We sued a free modulus magnitude estimation technique, commonly used as a psycophysical rating technique, and fully trained the subjects for the technique. The postures were selected through the analysis of the characteristics of te automobile assembly tasks and the expected difficulties. The subjective discomfort rating data were normalized by min-max standardization method. The consistency of the rating data was guaranteed by the analysis of spear man rank-order. The postures were ranked on their ratings and the relationships between the whole body discomfort ratings, and joint discomfort ratings were analysed. It is expected taht a system for evaluating postural stresses, which was specific to automobile assembly tasks, can be developed based on the relationship and can also be expended to a general purpose system with a minor modification.

  • PDF

Development of Composite Rollers for Polymer Film Processing (고분자 필름 제조 공정용 복합재료 롤러의 개발)

  • 방경근;이대길
    • Composites Research
    • /
    • v.14 no.1
    • /
    • pp.15-21
    • /
    • 2001
  • The pressing roller was designed and manufactured with high modulus carbon fiber composite material to exploit the high specific stiffness of the composite material. the optimal stacking sequence for the pressing roller was obtained from the FE analysis and the shape of the rubber coating layer was determined based on the calculated deflection for the uniform pressure on the film along the axial length of the pressing roller. Then the static deflection of the manufactured composite pressing roller was experimentally evaluated in comparison with analysis result and dynamic characteristics were measured through vibrational test.

  • PDF

Effect of matrix on fatigue strength of carbon fiber composite materials (탄소섬유강화 복합재료의 피로강도에 미치는 모재의 영향)

  • 유승원
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.113-121
    • /
    • 1992
  • In this study, the variation of fatigue strength in CF/PEEK and CF/EPOXY, the matrix and interfacial strength of which differ from each other, has been studied from the viewpoint of microfracture behavior. The results obtained are as follows; According as the fatigue strength moves from the lower cycle range to the higher cycle range, that of CF/PEEK shows higher curve than that of CF/EPOXY does. In the early stage of fatigue life, the characteristic of fatigue crack in CF/PEEK is mainly the fracture of longitudinal fiber, while that in CF/EPOXY is the fracture of transverse fiber. The difference of fatigue strength in these materials can be explained by the fracture criteria of transverse fiber and longitudinal fiber.

  • PDF

Effect of Packing Characteristics on the sintering Propertiesof Pyrophyllite (랍석분쇄물의 충전성이 그 소결성에 미치는 영향)

  • 지응업;최상욱;류태원
    • Journal of the Korean Ceramic Society
    • /
    • v.14 no.4
    • /
    • pp.236-241
    • /
    • 1977
  • Three kinds of specimen, consisting of the graded pyrophyllite particles alone, a substituent of 8 percent fire clay for the finer portion ($F_2$) of it, and 0.8 percent inorganic binder-added composite were prepared under the following conditions respectively; moisture content=4.5~5.0%, forming pressure=250kg/$\textrm{cm}^2$ and sintering temperature=1, 000~1, 30$0^{\circ}C$. The various properties such as modulus of rupture, apparent porosity, bulk specific gravity, pore size and pore distributiion were measured in order to collaborate with sintering phenomena. The results obtained are as follows: (1) Apparent porosity isgradually decreased with rising the sintering temperature to 1, 25$0^{\circ}C$. (2) The binder-added specimen showed the lowest value in porosity. (3) The optimum sintering temperature of specimens was considered to be 1, 25$0^{\circ}C$. (4) The wider differences between pore volumes of specimens could be obtained by method of mercurypenetration porosimeter than by the conventional method for porosity.

  • PDF

J-Integral under Transient Temperature State (천이온도 상태에서의 J적분)

  • 이강용;박정수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1781-1791
    • /
    • 1991
  • For the cracked plate under transient temperature distribution, J-integral is expressed in the form of line integral by using convolution integral. The J$_{1}$ integral is calculated for a through line center cracked steel plate under thermal and mechanical loading conditions and the calculated values are in good agreement with previous results. The effect of inertia term on the J$_{1}$ integral is not negligible for a glass but for a steel. For the glass plate, the rates of J$_{1}$ integral value to time increase if the values of material properties such as specific heat, thermal conductivity, thermal diffusivity and Young`s modulus as well as crack length and temperature difference in cracked edge increase.