• Title/Summary/Keyword: specific cutting resistance

Search Result 37, Processing Time 0.021 seconds

The Effect of Back Rake Angle of Tool for Specific Cutting Resistance in Turning (선삭에서 공구의 윗면경사각이 비절삭저항에 미치는 영향)

  • 김정현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.80-89
    • /
    • 1998
  • Back rake angle of tool is one of the fundamental effects to the cutting ability. In this paper, for several back rake angle of lathe tool (-5$^{\circ}$ , 0$^{\circ}$ , 5$^{\circ}$ , 10$^{\circ}$ , 15$^{\circ}$ ), we experimentally examine cutting forces via orthogonal cutting. Using measured cutting forces, a formula for specific cutting resistance is derived according to the variation of tool angle. Also, the measured cutting forces are analyzed in both time and frequency domain. Cutting parameters are obtained by measuring the thickness of chip, and the effect of the back rake angle of tool is manifested. This study maintains the predicted cutting model with improved accuracy.

  • PDF

Analysis of Variation of Specific Cutting Resistance in Nanoscale Cutting (나노스케일 절삭가공에서의 비절삭저항 변화 및 원인 분석)

  • Kwon, Ye-Pil;Kim, Si-Hoon;Jeon, Eun-chae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.23-28
    • /
    • 2020
  • In general, lithography techniques are applied when machining single-crystal silicon in nanoscale applications; however, these techniques involve low degrees of freedom for the vertical shapes. By applying mechanical techniques to machine silicon, nanopatterns having various types of vertical shapes can be manufactured. In this study, we determined the ductile-brittle machining transition point and analyzed the- variation of the specific cutting resistance within the ductile machining region in nanoscale applications. When brittle fracture occurred during the nanoscale cutting, the depth of cut and cutting force increased and decreased rapidly, respectively. The first point of rapid increase in the depth of cut was defined as the ductile-brittle machining point. Subsequently, the shape of the machining tool was observed using a scanning electron microscope to calibrate the machining area, considering the tip blunting. The specific cutting resistance decreased continuously and converged to a certain value during the nanoscale cutting. The decrease and convergence in the value can be attributed to the decrease in the ratio of the arc length to the area of the machining tool and silicon.

A Study on the Machinability of Ti-6Al-4V Alloy (Ti-6Al-4V합금의 절삭성에 관한 연구)

  • Park, Jong-Nam;Kim, Jae-Yoel;Cho, Gyu-Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.128-133
    • /
    • 2010
  • The Titanium has many superior characteristics which are specific strength, heat resistance, corrosion resistance, organism compatibility, non-magnetic and etc. and their quantity are abundant. this study performed turning operation of Ti-6Al-4V alloy using the TiAlN Coated Tool which treated Physical Vapor Deposition. Experimental works are also executed to measure cutting force, tool wear, chip figuration and surface roughness for different cutting conditions. As a result of study. Cutting depth influences on the cutting force much more than the feed rate and the value of the cutting force is the most stable at the depth of 1.0mm. And tool wear was serious at over 100m/min of cutting speed and cutting condition was excellent at 1.0mm of cutting depth.

A Study on the Cutting Characteristics in the Machining of Ti-6Al-4V Alloy using TiAlN Coated Tool (TiAlN 코팅공구를 사용한 Ti-6Al-4V 티타늄합급의 절삭특성에 관한 연구)

  • 이승철;박종남;조규재
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.451-456
    • /
    • 2004
  • The Titanium has many superior characteristics Which are specific strength, heat resistance, corrosion resistance, organism compatibility, non-magnetic and etc. and their quantity are abundant this study performed turning operation of Ti-6Al-4V alloy using the TiAlN Coate Tool which treated PVD (Physical Vapor Deposition). Experimental works are also executed to measure cutting force, chip figuration and surface roughness for different cutting conditions. As a result of study. Tool wear was serious at over 100m/min of cutting speed and cutting condition was excellent at 1.0mm of cutting depth.

  • PDF

A Study on the Cutting Characteristics of Ti-6Al-4V Alloy in Turning Operation (선삭가공시 Ti-6Al-4V 합금의 절삭특성에 관한 연구)

  • Park, Jong-Nam;Cho, Gyu-Jae;Lee, Seung-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.81-87
    • /
    • 2004
  • The titanium has many superior characteristics such as specific strength, heat resistance, corrosion resistance, organism compatibility, non-magnetic and etc. and their quantity are abundant. This study performed turning operation of Ti-6Al-4V alloy using the TiAlN coated tool which was treated with PVD. Experimental works were also executed to measure cutting force, chip figuration and surface roughness for different cutting conditions. As a result of study, tool wear was serious at the condition over 100m/min of cutting speed. The excellent cutting condition of cutting depth was at 1.0mm.

  • PDF

Analysis on Specific Cutting Resistance Variation by Tool Angles Based on a Concept of Representative Stres (겉보기 응력 개념에 기반한 공구각에 따른 비절삭저항 변화 분석)

  • Jeon, Eun-Chae;Choi, Hwan-Jin;Lee, Kyu-Min;Lee, Yun-Hee;Je, Tae-Jin;Kim, Jeong-Hwan;Choi, Doo-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.64-72
    • /
    • 2014
  • In the past, prism patterns have been linear triangular shapeswith a $90^{\circ}$ angle; however, new micro prism patterns having acute angles or obtuse angles have recently been the subject of demandin the display, lighting and photovoltaic industries. Micro-cutting experiments for micro-prism patterns having $60^{\circ}$, $90^{\circ}$, and $120^{\circ}$ angles on an electroplated Ni mold were performed and it was found in this study that the specific cutting resistance increased with a decrease in the tool angles (prism pattern angles). The cause of this variation had been thought to be the increase of the ploughing force due to tip rounding and the friction force due to the edge effect. However, the depth of the cut was large enough that it was possible to neglect these effects. Therefore, this study introduced the concept of representative stress of indentation. The measured stress was varied according to the indentation depth eventhoughthetestedspecimenswereidentical ; the varied stress was termed the representative stress. According to indentation theory, the strain that the Ni mold experienced increased with a decrease in the tool angle. Based on the stress-strain relationship, higher strain means higher stress and higher specific cutting resistance. Therefore, the specific cutting resistance was higher at smaller tool angles that had higher strain and stress.

A Study on the Chip Treatment of Ti-6Al-4V Alloy in Turning processing (Ti-6Al-4V 합금의 선삭가공시 칩처리성에 관한 연구)

  • Park J.N.;Lee S.C.;Cho G.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1551-1554
    • /
    • 2005
  • The Titanium has many superior characteristics Which are specific strength, heat resistance, corrosion resistance, organism compatibility, non-magnetic and etc. and their quantity are abundant. this study performed turning operation of Ti-6Al-4V alloy using the TiAlN Coate Tool which treated PVD (Physical Vapor Deposition). Experimental works are also executed to measure cutting force, chip figuration and surface roughness for different cutting conditions. As a result of study. Tool wear was serious at over 100m/min of cutting speed and cutting condition was excellent at 1.0mm of cutting depth.

  • PDF

A Study on the Micro Turning Machinability of A1-Mg Alloy Using Polycrystalline Diamond Tool (다결정 다이아몬드 공구를 이용한 Al-Mg계 합금의 미소선삭가공특성에 관한 연구)

  • Hwang, Joon;Namgung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.122-130
    • /
    • 1996
  • In this study, machinability of some aluminum-magnesium alloy are experimentally investigated using polycrystalline diamond tool with turning, and evaluated some independent cutting variables affected micrometal cutting characteristics as cutting force, specific cutting resistance, shear angles. To know the effect of cutting parameters of single point diamond machining, experiments were performed to measure cutting forces for high speed turning of aluminum alloy 6061-T6, SM45C and FC20 with poly- crystalline diamond and coated cemented carbide tool. Independent cutting variables were changed to a variety of cutting speed, feed rate, rake angles, material properties of workpiece and tool. Futhermore. Some useful informations are obtained in this study can guide micro metal cutting of aluminum alloy with diamond tool.

  • PDF

Analytical model for estimation of digging forces and specific energy of cable shovel

  • Stavropoulou, M.;Xiroudakis, G.;Exadaktylos, G.
    • Coupled systems mechanics
    • /
    • v.2 no.1
    • /
    • pp.23-51
    • /
    • 2013
  • An analytical algorithm for the estimation of the resistance forces exerted on the dipper of a cable shovel and the specific energy consumed in the cutting-loading process is presented. Forces due to payload and to cutting of geomaterials under given initial conditions, cutting trajectory of the bucket, bucket's design, and geomaterial properties are analytically computed. The excavation process has been modeled by means of a kinematical shovel model, as well as of dynamic payload and cutting resistance models. For the calculation of the cutting forces, a logsandwich passive failure mechanism of the geomaterial is considered, as has been found by considering that a slip surface propagates like a mixed mode crack. Subsequently, the Upper-Bound theorem of Limit Analysis Theory is applied for the approximate calculation of the maximum reacting forces exerted on the dipper of the cable shovel. This algorithm has been implemented into an Excel$^{TM}$ spreadsheet to facilitate user-friendly, "transparent" calculations and built-in data analysis techniques. Its use is demonstrated with a realistic application of a medium-sized shovel. It was found, among others, that the specific energy of cutting exhibits a size effect, such that it decreases as the (-1)-power of the cutting depth for the considered example application.

Effects of cutter runout on cutting forces during down-endmilling of Inconel718 (Inconel 718 하향 엔드밀링시 절삭력에 미치는 공구형상오차)

  • 이영문;양승한;장승일;백승기;이동식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.308-313
    • /
    • 2002
  • In end milling process, the undeformed chip section area and cutting forces vary periodically with phase change of the tool. However, the real undeformed chip section area deviates from the geometrically ideal one owing to cutter runout and tool shape error. In this study, a method of estimating the real undeformed chip section area which reflects cutter runout and tool shape error was presented during down end-milling of Inconel 715 using measure cutting forces. Contrary to the up-end milling the value of radial specific cutting resistance, $K_r$, becomes larger as the helix angle increases from $30^{\circ}$ to $40^{\circ}$ and it shows almost same value at $50^{\circ}$ The value of tangential specific cutting resistance, $K_t$ becomes larger as the helix angle increases same as in up-end milling, the $KK_r$, and $K_t$ values show a tendency to decrease with increase of the modified chip section area and this tendency is distinct with helix angle $40^{\circ}$.

  • PDF