A new method that improves the performance of large scale voice dialling system is presented using speaker adaptation. Since SI (Speaker Independent) based speech recognition system with phoneme HMM uses only the phoneme string of the input sentence, the storage space could be reduced greatly. However, the performance of the system is worse than that of the speaker dependent system due to the mismatch between the input utterance and the SI models. A new method that estimates the phonetic string and adaptation vectors iteratively is presented to reduce the mismatch between the training utterances and a set of SI models using speaker adaptation techniques. For speaker adaptation the stochastic matching methods are used to estimate the adaptation vectors. The experiments performed over actual telephone line shows that proposed method shows better performance as compared to the conventional method. with the SI phonetic recognizer.
본 논문에서는 화자인식의 성능향상을 위한 dynamic time warping (DTW) 기반의 문맥 제시형 화자인식에 대해 연구하였다. 화자인식에 있어 중요한 요소인 화자의 특성을 잘 반영할 수 있는 참조패턴을 생성하기 위해 유전자 알고리즘을 적용하였다. 또한, 문맥 종속형과 문맥 독립형 화자인식의 단점을 개선하기 위해 문맥 제시형 화자인식을 수행하였다. Clos set에서 화자식별과 open set에서 화자확인 실험을 하였으며 실험결과 기존 방법의 참조패턴을 이용하였을 경우보다 유전자 알고리즘에 의한 참조패턴이 인식률과 인식속도 면에서 우수함을 보였다.
When we make a speaker adapted model using MAPE (maximum a posteriori estimation), the adapted model has one mixture in each state. This is because we cannot estimate a number of a priori distribution from a speaker-independent model in each state. If the model is represented by one mixture in each state, it is not well adadpted to specific speaker because it is difficult to represent various speech informationof the speaker with one mixture. In this paper, we suggest the method using several mixtures to well represent various speech information of the speaker in each state. But, because speaker-specific training dat is not sufficient, this method can't be used in every state. So, we make the number of mixtures in each state variable in proportion to the number of frames and to the determinant ofthe variance matrix in the state. Using the proposed method, we reduced the error rate than methods using one branch in each state.
This paper describes an efficient method for unsupervised speaker adaptation. This method is based on selecting a subset of speakers who are acoustically close to a test speaker, and calculating adapted model parameters according to the previously stored sufficient HMM statistics of the selected speakers' data. In this method, only a few unsupervised test speaker's data are required for the adaptation. Also, by using the sufficient HMM statistics of the selected speakers' data, a quick adaptation can be done. Compared with a pre-clustering method, the proposed method can obtain a more optimal speaker cluster because the clustering result is determined according to test speaker's data on-line. Experiment results show that the proposed method attains better improvement than MLLR from the speaker independent model. Moreover the proposed method utilizes only one unsupervised sentence utterance, while MLLR usually utilizes more than ten supervised sentence utterances.
본 논문에서는 CDHMM 음성인식기의 인식성능을 향상시키기 위해 상태 당 관측밀도함수 수 변화에 의한 화자적응 알고리듬을 제안하였다. 제안한 방법은 CDHMM의 각 상태마다 관측 확률밀도함수의 가지 수가 두 개 이상이 릴 수도 있게 하여 발음특성의 다양성을 반영할 수 있게 하였다. 가지 수는 각 상태에 속하는 적응음성의 프레임 수에 따라 정하는 방법과 특징벡터 행렬식에 따라 정하는 방법으로 하였다 이두 방법중의 어느 하나로 관측 확률밀도함수의 가지가 결정되면, 세분화된 각 가지로부터 MAP 파라미터를 추출함으로써 정밀한 화자적응모델의 파라미터를 구할 수 있었다. 아울러 적응음성을 상태분할 할 때 기존의 화자독립모델을 사전정보로 이용함으로써 ML 추정시의 초기 상태분할 오류의 영향을 줄여 기존 상태분 할 방법의 단점을 개선하였다 그리고 상태지속분포를 화자에 적응시킴으로써 화자 고유의 발음속도와 발음 패턴 등의 음성특성을 흡수하도록 하였다. 제안한 방법들의 타당성을 확인하기 위한 실험에서 제안한 방법이 기존 방법에 비해 높은 인식률을 얻음을 확인하였다.
This paper studied the pattern recognition algorithm and feature parameters for emotion recognition. In this paper, KNN algorithm was used as the pattern matching technique for comparison, and also VQ and GMM were used lot speaker and context independent recognition. The speech parameters used as the feature are pitch, energy, MFCC and their first and second derivatives. Experimental results showed that emotion recognizer using MFCC and their derivatives as a feature showed better performance than that using the Pitch and energy Parameters. For pattern recognition algorithm, GMM based emotion recognizer was superior to KNN and VQ based recognizer
이 논문은 문맥 독립 화자인식에 사용될 벡터 양자기의 설계법 개선에 관한 연구이다. 구체적으로 벡터 양자기 코드북 생성 과정에서 특징 벡터 공간을 분할하여, 양자기 설계 시 학습에 필요한 계산 복잡도를 획기적으로 줄이는 방법을 제안한다. 제안된 공간 분할 벡터 양자기 설계법은 저자가 제안한 문맥 종속 화자인식을 위한 준비반복 벡터 양자기 설계법의 벡터 공간에 대한 일반화이다. 공간 분할 벡터 양자기 설계법은 종래의 설계법이 코드북 생성에 반복적 학습 설계를 사용한다는 것과 대조를 이룬다. 또한 공간 분할 벡터 양자기 설계법의 특징은 다음과 같다. 첫째, 이 설계법은 특징 벡터 공간을 분할한 공간 분할 군집을 이용함으로써 반복 학습을 하지 않는다. 둘째, 설계된 각 양자 영역은 공간 분할 군집의 양자 영역을 원용하며, 양자점은 각각의 통계 분포에 대해 최적점으로 설정된다. 셋째, 공간 분할 군집은 특징 벡터 집합에 대해 표본 벡터 생성법(CSVQ1, 2), 특징 벡터 공간에 대해 균일 초격자 구조 생성법(CSYQ3)으로 형성하였다. 수치 실험은 화자 10명이 발성한 50개의 문장에 대해 문맥 독립 화자인식 실험으로 수행되었다. 특징계수는 12차 멜켑스트럼 벡터를 사용하였고 각각의 공간 분할 코드북 생성법에 대해 코드북 크기를 32부터 128까지 변화시키면서 기존의 벡터 양자기 인식법과 비교하였다. 제안된 방법은 표본 벡터 생성법을 사용한 경우 인식률 100%로 기존의 방법과 같은 결과를 보였다. 따라서 제안된 공간 분할 벡터 양자기 설계법은 설계에 필요한 계산량이 획기적으로 줄면서 인식률은 보존되어 문맥 독립 화자 인식에 새로운 대안이 되며 또한 특징 벡터 공간을 설정할 수 있는 다양한 응용에 적용이 가능할 것으로 사료된다.
본 논문은 keyword spotting 기술을 이용한 247개의 DDD 지역명을 인식 대상으로 하여 화자 독립의 한국어 연속 음성인식을 위한 시스템을 제안하였다. 적용된 인식 알고리즘은 음성에서 시간축의 변화와 스펙트럼의 왜곡을 흡수할 수 있는 모델로 DP와 MLP로 구성된 동적 프로그래밍 신경회로망(DPNN)을 사용하였다. 이와 같은 실험을 위해 단어 모델을 만들고 이에 대한 단어 모델을 keyword 모델과 non-keyword 모델로 구분하여 성능을 향상시킬 수 있도록 하였다. 또한 잘못된 결과를 출력시키지 않기 위해서 후처리 과정을 두고 실험을 하였다. 실험결과, 단독어에 대한 화자 종속 실험은 93.45%의 결과를 보였고, 단독어에 대한 화자 독립 실험은 84.05%의 실험결과를 보였으며, 가장 중요한 간단한 대화체 문장의 keyword spotting 실험은 화자 종속으로 77.34%의 결과를 보였으며, 화자 독립 실험은 70.63%의 결과를 얻었다.
Farhadipour, Aref;Veisi, Hadi;Asgari, Mohammad;Keyvanrad, Mohammad Ali
ETRI Journal
/
제40권5호
/
pp.643-652
/
2018
Dysarthria is a degenerative disorder of the central nervous system that affects the control of articulation and pitch; therefore, it affects the uniqueness of sound produced by the speaker. Hence, dysarthric speaker recognition is a challenging task. In this paper, a feature-extraction method based on deep belief networks is presented for the task of identifying a speaker suffering from dysarthria. The effectiveness of the proposed method is demonstrated and compared with well-known Mel-frequency cepstral coefficient features. For classification purposes, the use of a multi-layer perceptron neural network is proposed with two structures. Our evaluations using the universal access speech database produced promising results and outperformed other baseline methods. In addition, speaker identification under both text-dependent and text-independent conditions are explored. The highest accuracy achieved using the proposed system is 97.3%.
본 논문에서는 세 가지 문맥독립 화자식별방법을 제안한다. 먼저, 화자 식별시 성도의 특성을 충분히 표현하지 못한 프레임이 포함되지 않도록 하는 프레임선택 (Frame Selection; FS)방법을 제안한다. 이 방법은 각 프레임에서 가장 큰 유사도와 두 번째로 큰 유사도의 차이를 평가하여 중요 프레임을 선택한 후, 선택된 프레임만을 이용하여 유사도를 계산하는 방법이다. 두 번째로 제안하는 복합 (Hyrid)방법은 FS와 가중모델순위 (Weighting Model Rank: WMR)방법을 결합시킨 것으로, FS방법을 이용하여 중요 프레임을 선택한 후, 지수함수 가중치를 이용하여 식별화자를 결정하는 것이다. 마지막으로 제안하는 수정된 가중모델순위 (Modified WMR; MWMR)방법은 식별화자를 결정할 때 유사도의 상대적 위치만을 고려하였던 기존의 U방법과는 달리 유사도와 유사도의 상대적 위치를 함께 고려하는 방법이다. 화자식별 실험결과 제안한 방법들이 기존의 ML 방법보다 향상된 식별률을 보였으며, 복합 방법 및 MWMR방법의 경우에는 WMR방법보다 각각 약 2%와 3%의 향상된 식별률을 나타내어 제안한 방법들의 유효성을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.