• 제목/요약/키워드: speaker independent

검색결과 235건 처리시간 0.029초

화자 적응을 이용한 대용량 음성 다이얼링 (Large Scale Voice Dialling using Speaker Adaptation)

  • 김원구
    • 제어로봇시스템학회논문지
    • /
    • 제16권4호
    • /
    • pp.335-338
    • /
    • 2010
  • A new method that improves the performance of large scale voice dialling system is presented using speaker adaptation. Since SI (Speaker Independent) based speech recognition system with phoneme HMM uses only the phoneme string of the input sentence, the storage space could be reduced greatly. However, the performance of the system is worse than that of the speaker dependent system due to the mismatch between the input utterance and the SI models. A new method that estimates the phonetic string and adaptation vectors iteratively is presented to reduce the mismatch between the training utterances and a set of SI models using speaker adaptation techniques. For speaker adaptation the stochastic matching methods are used to estimate the adaptation vectors. The experiments performed over actual telephone line shows that proposed method shows better performance as compared to the conventional method. with the SI phonetic recognizer.

유전자 알고리즘을 이용한 화자인식 시스템 성능 향상 (Performance Improvement of Speaker Recognition System Using Genetic Algorithm)

  • 문인섭;김종교
    • 한국음향학회지
    • /
    • 제19권8호
    • /
    • pp.63-67
    • /
    • 2000
  • 본 논문에서는 화자인식의 성능향상을 위한 dynamic time warping (DTW) 기반의 문맥 제시형 화자인식에 대해 연구하였다. 화자인식에 있어 중요한 요소인 화자의 특성을 잘 반영할 수 있는 참조패턴을 생성하기 위해 유전자 알고리즘을 적용하였다. 또한, 문맥 종속형과 문맥 독립형 화자인식의 단점을 개선하기 위해 문맥 제시형 화자인식을 수행하였다. Clos set에서 화자식별과 open set에서 화자확인 실험을 하였으며 실험결과 기존 방법의 참조패턴을 이용하였을 경우보다 유전자 알고리즘에 의한 참조패턴이 인식률과 인식속도 면에서 우수함을 보였다.

  • PDF

CDHMM의 상태당 가지 수를 가변시키는 화자적응에 관한 연구 (A study on the speaker adaptation in CDHMM usling variable number of mixtures in each state)

  • 김광태;서정일;홍재근
    • 전자공학회논문지S
    • /
    • 제35S권3호
    • /
    • pp.166-175
    • /
    • 1998
  • When we make a speaker adapted model using MAPE (maximum a posteriori estimation), the adapted model has one mixture in each state. This is because we cannot estimate a number of a priori distribution from a speaker-independent model in each state. If the model is represented by one mixture in each state, it is not well adadpted to specific speaker because it is difficult to represent various speech informationof the speaker with one mixture. In this paper, we suggest the method using several mixtures to well represent various speech information of the speaker in each state. But, because speaker-specific training dat is not sufficient, this method can't be used in every state. So, we make the number of mixtures in each state variable in proportion to the number of frames and to the determinant ofthe variance matrix in the state. Using the proposed method, we reduced the error rate than methods using one branch in each state.

  • PDF

SUFFICIENT HMM 통계치에 기반한 UNSUPERVISED 화자 적응 (Unsupervised Speaker Adaptation Based on Sufficient HMM Statistics)

  • 고봉옥;김종교
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2003년도 5월 학술대회지
    • /
    • pp.127-130
    • /
    • 2003
  • This paper describes an efficient method for unsupervised speaker adaptation. This method is based on selecting a subset of speakers who are acoustically close to a test speaker, and calculating adapted model parameters according to the previously stored sufficient HMM statistics of the selected speakers' data. In this method, only a few unsupervised test speaker's data are required for the adaptation. Also, by using the sufficient HMM statistics of the selected speakers' data, a quick adaptation can be done. Compared with a pre-clustering method, the proposed method can obtain a more optimal speaker cluster because the clustering result is determined according to test speaker's data on-line. Experiment results show that the proposed method attains better improvement than MLLR from the speaker independent model. Moreover the proposed method utilizes only one unsupervised sentence utterance, while MLLR usually utilizes more than ten supervised sentence utterances.

  • PDF

CDHMM의 화자적응에 관한 연구 (A Study on the Speaker Adaptation in CDHMM)

  • 김광태
    • 대한전자공학회논문지SP
    • /
    • 제39권2호
    • /
    • pp.116-127
    • /
    • 2002
  • 본 논문에서는 CDHMM 음성인식기의 인식성능을 향상시키기 위해 상태 당 관측밀도함수 수 변화에 의한 화자적응 알고리듬을 제안하였다. 제안한 방법은 CDHMM의 각 상태마다 관측 확률밀도함수의 가지 수가 두 개 이상이 릴 수도 있게 하여 발음특성의 다양성을 반영할 수 있게 하였다. 가지 수는 각 상태에 속하는 적응음성의 프레임 수에 따라 정하는 방법과 특징벡터 행렬식에 따라 정하는 방법으로 하였다 이두 방법중의 어느 하나로 관측 확률밀도함수의 가지가 결정되면, 세분화된 각 가지로부터 MAP 파라미터를 추출함으로써 정밀한 화자적응모델의 파라미터를 구할 수 있었다. 아울러 적응음성을 상태분할 할 때 기존의 화자독립모델을 사전정보로 이용함으로써 ML 추정시의 초기 상태분할 오류의 영향을 줄여 기존 상태분 할 방법의 단점을 개선하였다 그리고 상태지속분포를 화자에 적응시킴으로써 화자 고유의 발음속도와 발음 패턴 등의 음성특성을 흡수하도록 하였다. 제안한 방법들의 타당성을 확인하기 위한 실험에서 제안한 방법이 기존 방법에 비해 높은 인식률을 얻음을 확인하였다.

GMM을 이용한 화자 및 문장 독립적 감정 인식 시스템 구현 (Speaker and Context Independent Emotion Recognition System using Gaussian Mixture Model)

  • 강면구;김원구
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2463-2466
    • /
    • 2003
  • This paper studied the pattern recognition algorithm and feature parameters for emotion recognition. In this paper, KNN algorithm was used as the pattern matching technique for comparison, and also VQ and GMM were used lot speaker and context independent recognition. The speech parameters used as the feature are pitch, energy, MFCC and their first and second derivatives. Experimental results showed that emotion recognizer using MFCC and their derivatives as a feature showed better performance than that using the Pitch and energy Parameters. For pattern recognition algorithm, GMM based emotion recognizer was superior to KNN and VQ based recognizer

  • PDF

문맥 독립 화자인식을 위한 공간 분할 벡터 양자기 설계 (A Classified Space VQ Design for Text-Independent Speaker Recognition)

  • 임동철;이행세
    • 정보처리학회논문지B
    • /
    • 제10B권6호
    • /
    • pp.673-680
    • /
    • 2003
  • 이 논문은 문맥 독립 화자인식에 사용될 벡터 양자기의 설계법 개선에 관한 연구이다. 구체적으로 벡터 양자기 코드북 생성 과정에서 특징 벡터 공간을 분할하여, 양자기 설계 시 학습에 필요한 계산 복잡도를 획기적으로 줄이는 방법을 제안한다. 제안된 공간 분할 벡터 양자기 설계법은 저자가 제안한 문맥 종속 화자인식을 위한 준비반복 벡터 양자기 설계법의 벡터 공간에 대한 일반화이다. 공간 분할 벡터 양자기 설계법은 종래의 설계법이 코드북 생성에 반복적 학습 설계를 사용한다는 것과 대조를 이룬다. 또한 공간 분할 벡터 양자기 설계법의 특징은 다음과 같다. 첫째, 이 설계법은 특징 벡터 공간을 분할한 공간 분할 군집을 이용함으로써 반복 학습을 하지 않는다. 둘째, 설계된 각 양자 영역은 공간 분할 군집의 양자 영역을 원용하며, 양자점은 각각의 통계 분포에 대해 최적점으로 설정된다. 셋째, 공간 분할 군집은 특징 벡터 집합에 대해 표본 벡터 생성법(CSVQ1, 2), 특징 벡터 공간에 대해 균일 초격자 구조 생성법(CSYQ3)으로 형성하였다. 수치 실험은 화자 10명이 발성한 50개의 문장에 대해 문맥 독립 화자인식 실험으로 수행되었다. 특징계수는 12차 멜켑스트럼 벡터를 사용하였고 각각의 공간 분할 코드북 생성법에 대해 코드북 크기를 32부터 128까지 변화시키면서 기존의 벡터 양자기 인식법과 비교하였다. 제안된 방법은 표본 벡터 생성법을 사용한 경우 인식률 100%로 기존의 방법과 같은 결과를 보였다. 따라서 제안된 공간 분할 벡터 양자기 설계법은 설계에 필요한 계산량이 획기적으로 줄면서 인식률은 보존되어 문맥 독립 화자 인식에 새로운 대안이 되며 또한 특징 벡터 공간을 설정할 수 있는 다양한 응용에 적용이 가능할 것으로 사료된다.

신경 회로망을 이용한 연속 음성에서의 keyword spotting 인식 방식에 관한 연구 (A study on the Method of the Keyword Spotting Recognition in the Continuous speech using Neural Network)

  • 양진우;김순협
    • 한국음향학회지
    • /
    • 제15권4호
    • /
    • pp.43-49
    • /
    • 1996
  • 본 논문은 keyword spotting 기술을 이용한 247개의 DDD 지역명을 인식 대상으로 하여 화자 독립의 한국어 연속 음성인식을 위한 시스템을 제안하였다. 적용된 인식 알고리즘은 음성에서 시간축의 변화와 스펙트럼의 왜곡을 흡수할 수 있는 모델로 DP와 MLP로 구성된 동적 프로그래밍 신경회로망(DPNN)을 사용하였다. 이와 같은 실험을 위해 단어 모델을 만들고 이에 대한 단어 모델을 keyword 모델과 non-keyword 모델로 구분하여 성능을 향상시킬 수 있도록 하였다. 또한 잘못된 결과를 출력시키지 않기 위해서 후처리 과정을 두고 실험을 하였다. 실험결과, 단독어에 대한 화자 종속 실험은 93.45%의 결과를 보였고, 단독어에 대한 화자 독립 실험은 84.05%의 실험결과를 보였으며, 가장 중요한 간단한 대화체 문장의 keyword spotting 실험은 화자 종속으로 77.34%의 결과를 보였으며, 화자 독립 실험은 70.63%의 결과를 얻었다.

  • PDF

Dysarthric speaker identification with different degrees of dysarthria severity using deep belief networks

  • Farhadipour, Aref;Veisi, Hadi;Asgari, Mohammad;Keyvanrad, Mohammad Ali
    • ETRI Journal
    • /
    • 제40권5호
    • /
    • pp.643-652
    • /
    • 2018
  • Dysarthria is a degenerative disorder of the central nervous system that affects the control of articulation and pitch; therefore, it affects the uniqueness of sound produced by the speaker. Hence, dysarthric speaker recognition is a challenging task. In this paper, a feature-extraction method based on deep belief networks is presented for the task of identifying a speaker suffering from dysarthria. The effectiveness of the proposed method is demonstrated and compared with well-known Mel-frequency cepstral coefficient features. For classification purposes, the use of a multi-layer perceptron neural network is proposed with two structures. Our evaluations using the universal access speech database produced promising results and outperformed other baseline methods. In addition, speaker identification under both text-dependent and text-independent conditions are explored. The highest accuracy achieved using the proposed system is 97.3%.

강건한 문맥독립 화자식별을 위한 프레임 선택방법, 복합방법, 수정된 가중모델순위 방법 (Frame Selection, Hybrid, Modified Weighting Model Rank Method for Robust Text-independent Speaker Identification)

  • 김민정;오세진;정호열;정현열
    • 한국음향학회지
    • /
    • 제21권8호
    • /
    • pp.735-743
    • /
    • 2002
  • 본 논문에서는 세 가지 문맥독립 화자식별방법을 제안한다. 먼저, 화자 식별시 성도의 특성을 충분히 표현하지 못한 프레임이 포함되지 않도록 하는 프레임선택 (Frame Selection; FS)방법을 제안한다. 이 방법은 각 프레임에서 가장 큰 유사도와 두 번째로 큰 유사도의 차이를 평가하여 중요 프레임을 선택한 후, 선택된 프레임만을 이용하여 유사도를 계산하는 방법이다. 두 번째로 제안하는 복합 (Hyrid)방법은 FS와 가중모델순위 (Weighting Model Rank: WMR)방법을 결합시킨 것으로, FS방법을 이용하여 중요 프레임을 선택한 후, 지수함수 가중치를 이용하여 식별화자를 결정하는 것이다. 마지막으로 제안하는 수정된 가중모델순위 (Modified WMR; MWMR)방법은 식별화자를 결정할 때 유사도의 상대적 위치만을 고려하였던 기존의 U방법과는 달리 유사도와 유사도의 상대적 위치를 함께 고려하는 방법이다. 화자식별 실험결과 제안한 방법들이 기존의 ML 방법보다 향상된 식별률을 보였으며, 복합 방법 및 MWMR방법의 경우에는 WMR방법보다 각각 약 2%와 3%의 향상된 식별률을 나타내어 제안한 방법들의 유효성을 확인할 수 있었다.