• Title/Summary/Keyword: spatiotemporal data

Search Result 276, Processing Time 0.022 seconds

Flood inflow forecasting on HantanRiver reservoir by using forecasted rainfall (LDAPS 예측 강우를 활용한 한탄강홍수조절댐 홍수 유입량 예측)

  • Yu, Myungsu;Lee, Youngmok;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.4
    • /
    • pp.327-333
    • /
    • 2016
  • Due to climate changes accelerated by global warming, South Korea has experienced regional climate variations as well as increasing severities and frequencies of extreme weather. The precipitation in South Korea during the summer season in 2013 was concentrated mainly in the central region; the maximum number of rainy days were recorded in the central region while the southern region had the minimum number of rainy days. As a result, much attention has been paid to the importance of flood control due to damage caused by spatiotemporal intensive rainfalls. In this study, forecast rainfall data was used for rapid responses to prevent disasters during flood seasons. For this purpose, the applicability of numerical weather forecast data was analyzed using the ground observation rainfall and inflow rate. Correlation coefficient, maximum rainfall intensity percent error and total rainfall percent error were used for the quantitative comparison of ground observation rainfall data. In addition, correlation coefficient, Nash-Sutcliffe efficiency coefficient, and standardized RMSE were used for the quantitative comparison of inflow rate. As a result of the simulation, the correlation coefficient up to six hours was 0.7 or higher, indicating a high correlation. Furthermore, the Nash-Sutcliffe efficiency coefficient was positive until six hours, confirming the applicability of forecast rainfall.

A Development Plan for Integrated Inventory Management System to Support Decision Making for Disaster Response (재난대응 의사결정 지원을 위한 인벤토리 통합 관리 시스템 구축 방안)

  • Choi, Soo-Young;Gang, Su-Myung;Kim, Jin-Man;Oh, Eun-Ho;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.179-188
    • /
    • 2014
  • Social overhead capital (SOC) facilities are being threatened continuously by abnormal climate events that are increasing globally. For disaster response, rapid decision making on evacuation routes and other matters is critical. For this purpose, spatiotemporal information that combine data on disasters and SOC facilities needs to be utilized. This information is separately collected by government agencies and public organizations, and is not managed in an integrated manner. For rapid disaster response, an integrated management of separately collected disaster data and the creation of such information as the safety and damages on SOC facilities are required. To achieve this goal, it is essential to build inventories that integrate all the related information to support decision making indispensable for disaster response. In this study, a development plan for an integrated inventory management system based on the management and connection of inventories to support rapid decision making for disaster response is proposed. This system can collect and standardize data related to disasters and SOC facilities that are being managed separately and provide integrated information in line with the needs of users. The proposed system can be used as a decision making tool for proactive disaster response.

Rainfall Intensity Estimation Using Geostationary Satellite Data Based on Machine Learning: A Case Study in the Korean Peninsula in Summer (정지 궤도 기상 위성을 이용한 기계 학습 기반 강우 강도 추정: 한반도 여름철을 대상으로)

  • Shin, Yeji;Han, Daehyeon;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1405-1423
    • /
    • 2021
  • Precipitation is one of the main factors that affect water and energy cycles, and its estimation plays a very important role in securing water resources and timely responding to water disasters. Satellite-based quantitative precipitation estimation (QPE) has the advantage of covering large areas at high spatiotemporal resolution. In this study, machine learning-based rainfall intensity models were developed using Himawari-8 Advanced Himawari Imager (AHI) water vapor channel (6.7 ㎛), infrared channel (10.8 ㎛), and weather radar Column Max (CMAX) composite data based on random forest (RF). The target variables were weather radar reflectivity (dBZ) and rainfall intensity (mm/hr) converted by the Z-R relationship. The results showed that the model which learned CMAX reflectivity produced the Critical Success Index (CSI) of 0.34 and the Mean-Absolute-Error (MAE) of 4.82 mm/hr. When compared to the GeoKompsat-2 and Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)-Cloud Classification System (CCS) rainfall intensity products, the accuracies improved by 21.73% and 10.81% for CSI, and 31.33% and 23.49% for MAE, respectively. The spatial distribution of the estimated rainfall intensity was much more similar to the radar data than the existing products.

The Characteristics of Submarine Groundwater Discharge in the Coastal Area of Nakdong River Basin (낙동강 유역의 연안 해저지하수 유출특성에 관한 연구)

  • Kim, Daesun;Jung, Hahn Chul
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1589-1597
    • /
    • 2021
  • Submarine groundwater discharge (SGD) in coastal areas is gaining importance as a major transport route that bring nutrients and trace metals into the ocean. This paper describes the analysis of the seasonal changes and spatiotemporal characteristicsthrough the modeling monthly SGD for 35 years from 1986 to 2020 for the Nakdong river basin. In this study, we extracted 210 watersheds and SGD estimation points using the SRTM (Shuttle Radar Topography Mission) DEM (Digital Elevation Model). The average annual SGD of the Nakdong River basin was estimated to be 466.7 m2/yr from the FLDAS (Famine Early Warning Systems Network Land Data Assimilation System) recharge data of 10 km which is the highest resolution global model applicable to Korea. There was no significant time-series variation of SGD in the Nakdong river basin, but the concentrated period of SGD was expanded from summer to autumn. In addition, it was confirmed that there is a large amount of SGD regardless of the season in coastal area nearby large rivers, and the trend has slightly increased since the 1980s. The characteristics are considered to be related to the change in the major precipitation period in the study area, and spatially it is due to the high baseflow-groundwater in the vicinity of large rivers. This study is a precedentstudy that presents a modeling technique to explore the characteristics of SGD in Korea, and is expected to be useful as foundational information for coastal management and evaluating the impact of SGD to the ocean.

Applicability Evaluation of Spatio-Temporal Data Fusion Using Fine-scale Optical Satellite Image: A Study on Fusion of KOMPSAT-3A and Sentinel-2 Satellite Images (고해상도 광학 위성영상을 이용한 시공간 자료 융합의 적용성 평가: KOMPSAT-3A 및 Sentinel-2 위성영상의 융합 연구)

  • Kim, Yeseul;Lee, Kwang-Jae;Lee, Sun-Gu
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1931-1942
    • /
    • 2021
  • As the utility of an optical satellite image with a high spatial resolution (i.e., fine-scale) has been emphasized, recently, various studies of the land surface monitoring using those have been widely carried out. However, the usefulness of fine-scale satellite images is limited because those are acquired at a low temporal resolution. To compensate for this limitation, the spatiotemporal data fusion can be applied to generate a synthetic image with a high spatio-temporal resolution by fusing multiple satellite images with different spatial and temporal resolutions. Since the spatio-temporal data fusion models have been developed for mid or low spatial resolution satellite images in the previous studies, it is necessary to evaluate the applicability of the developed models to the satellite images with a high spatial resolution. For this, this study evaluated the applicability of the developed spatio-temporal fusion models for KOMPSAT-3A and Sentinel-2 images. Here, an Enhanced Spatial and Temporal Adaptive Fusion Model (ESTARFM) and Spatial Time-series Geostatistical Deconvolution/Fusion Model (STGDFM), which use the different information for prediction, were applied. As a result of this study, it was found that the prediction performance of STGDFM, which combines temporally continuous reflectance values, was better than that of ESTARFM. Particularly, the prediction performance of STGDFM was significantly improved when it is difficult to simultaneously acquire KOMPSAT and Sentinel-2 images at a same date due to the low temporal resolution of KOMPSAT images. From the results of this study, it was confirmed that STGDFM, which has relatively better prediction performance by combining continuous temporal information, can compensate for the limitation to the low revisit time of fine-scale satellite images.

Impacts of Seasonal and Interannual Variabilities of Sea Surface Temperature on its Short-term Deep-learning Prediction Model Around the Southern Coast of Korea (한국 남부 해역 SST의 계절 및 경년 변동이 단기 딥러닝 모델의 SST 예측에 미치는 영향)

  • JU, HO-JEONG;CHAE, JEONG-YEOB;LEE, EUN-JOO;KIM, YOUNG-TAEG;PARK, JAE-HUN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.2
    • /
    • pp.49-70
    • /
    • 2022
  • Sea Surface Temperature (SST), one of the ocean features, has a significant impact on climate, marine ecosystem and human activities. Therefore, SST prediction has been always an important issue. Recently, deep learning has drawn much attentions, since it can predict SST by training past SST patterns. Compared to the numerical simulations, deep learning model is highly efficient, since it can estimate nonlinear relationships between input data. With the recent development of Graphics Processing Unit (GPU) in computer, large amounts of data can be calculated repeatedly and rapidly. In this study, Short-term SST will be predicted through Convolutional Neural Network (CNN)-based U-Net that can handle spatiotemporal data concurrently and overcome the drawbacks of previously existing deep learning-based models. The SST prediction performance depends on the seasonal and interannual SST variabilities around the southern coast of Korea. The predicted SST has a wide range of variance during spring and summer, while it has small range of variance during fall and winter. A wide range of variance also has a significant correlation with the change of the Pacific Decadal Oscillation (PDO) index. These results are found to be affected by the intensity of the seasonal and PDO-related interannual SST fronts and their intensity variations along the southern Korean seas. This study implies that the SST prediction performance using the developed deep learning model can be significantly varied by seasonal and interannual variabilities in SST.

Application of convolutional autoencoder for spatiotemporal bias-correction of radar precipitation (CAE 알고리즘을 이용한 레이더 강우 보정 평가)

  • Jung, Sungho;Oh, Sungryul;Lee, Daeeop;Le, Xuan Hien;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.453-462
    • /
    • 2021
  • As the frequency of localized heavy rainfall has increased during recent years, the importance of high-resolution radar data has also increased. This study aims to correct the bias of Dual Polarization radar that still has a spatial and temporal bias. In many studies, various statistical techniques have been attempted to correct the bias of radar rainfall. In this study, the bias correction of the S-band Dual Polarization radar used in flood forecasting of ME was implemented by a Convolutional Autoencoder (CAE) algorithm, which is a type of Convolutional Neural Network (CNN). The CAE model was trained based on radar data sets that have a 10-min temporal resolution for the July 2017 flood event in Cheongju. The results showed that the newly developed CAE model provided improved simulation results in time and space by reducing the bias of raw radar rainfall. Therefore, the CAE model, which learns the spatial relationship between each adjacent grid, can be used for real-time updates of grid-based climate data generated by radar and satellites.

Analysis of Upper- and Lower-level Wind and Trajectory in and from China During the P eriod of Occurrence of Migratory Insect Pests of South Korea (비래해충 발생기간 중국 발원지 바람 및 한반도 유입 궤적 분석)

  • Jung-Hyuk Kang;Seung-Jae Lee;Joo-Yeol Baek;Nak-Jung Choi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.415-426
    • /
    • 2023
  • In this study, the horizontal and vertical structure of wind speed and wind direction were analyzed at the origin of migratory insect pests in China. Wind rose analysis was carried out using the Land-Atmosphere Modeling Package (LAMP) - WRF data, which has the spatiotemporal resolution of about 20 km and 1 hour intervals. Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) was employed for backward trajectory analysis between South Korea and Southeastern China with Global Data Assimilation System (GDAS). The research interest date is July 16, when rice planthopper and leafhopper were observed at the same time. In order to examine where a jet stream occurs in the vertical in source regions and South Korea during the period (July 8 to July 17 in 2021), three-dimensional wind information was extracted and analyzed using the east-west, north-south, and vertical component wind data of the LAM P. The vertical distribution of wind showed that the wind changed in favor of the inflow of migratory insect pests during the period. As a result of analyzing the wind rose, about 30% or more of the wind at a point close to South Korea was classified into the low-level jet stream. In addition, majority of the wind directions for the low-level jet streams (rather than high-level jet streams) at the five origin sites were heading toward South Korea and even Japan, and this was supported by the HYSPLIT-based backward trajectory analysis.

Trends in QA/QC of Phytoplankton Data for Marine Ecosystem Monitoring (해양생태계 모니터링을 위한 식물플랑크톤 자료의 정도 관리 동향)

  • YIH, WONHO;PARK, JONG WOO;SEONG, KYEONG AH;PARK, JONG-GYU;YOO, YEONG DU;KIM, HYUNG SEOP
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.3
    • /
    • pp.220-237
    • /
    • 2021
  • Since the functional importance of marine phytoplankton was firstly advocated from early 1880s massive data on the species composition and abundance were produced by classical microscopic observation and the advanced auto-imaging technologies. Recently, pigment composition resulted from direct chemical analysis of phytoplankton samples or indirect remote sensing could be used for the group-specific quantification, which leads us to more diversified data production methods and for more improved spatiotemporal accessibilities to the target data-gathering points. In quite a few cases of many long-term marine ecosystem monitoring programs the phytoplankton species composition and abundance was included as a basic monitoring item. The phytoplankton data could be utilized as a crucial evidence for the long-term change in phytoplankton community structure and ecological functioning at the monitoring stations. Usability of the phytoplankton data sometimes is restricted by the differences in data producers throughout the whole monitoring period. Methods for sample treatments, analyses, and species identification of the phytoplankton species could be inconsistent among the different data producers and the monitoring years. In-depth study to determine the precise quantitative values of the phytoplankton species composition and abundance might be begun by Victor Hensen in late 1880s. International discussion on the quality assurance of the marine phytoplankton data began in 1969 by the SCOR Working Group 33 of ICSU. Final report of the Working group in 1974 (UNESCO Technical Papers in Marine Science 18) was later revised and published as the UNESCO Monographs on oceanographic methodology 6. The BEQUALM project, the former body of IPI (International Phytoplankton Intercomparison) for marine phytoplankton data QA/QC under ISO standard, was initiated in late 1990. The IPI is promoting international collaboration for all the participating countries to apply the QA/QC standard established from the 20 years long experience and practices. In Korea, however, such a QA/QC standard for marine phytoplankton species composition and abundance data is not well established by law, whereas that for marine chemical data from measurements and analysis has been already set up and managed. The first priority might be to establish a QA/QC standard system for species composition and abundance data of marine phytoplankton, then to be extended to other functional groups at the higher consumer level of marine food webs.

Reviews in Medical Geography: Spatial Epidemiology of Vector-Borne Diseases (벡터매개 질병(vector-borne diseases) 공간역학을 중심으로 한 보건지리학의 최근 연구)

  • Park, Sunyurp;Han, Daikwon
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.5
    • /
    • pp.677-699
    • /
    • 2012
  • Climate changes may cause substantial changes in spatial patterns and distribution of vector-borne diseases (VBD's), which will result in a significant threat to humans and emerge as an important public health problem that the international society needs to solve. As global warming becomes widespread and the Korean peninsula characterizes subtropical climate, the potentials of climate-driven disease outbreaks and spread rapidly increase with changes in land use, population distributions, and ecological environments. Vector-borne diseases are typically infected by insects such as mosquitoes and ticks, and infected hosts and vectors increased dramatically as the habitat ranges of the VBD agents have been expanded for the past 20 years. Medical geography integrates and processes a wide range of public health data and indicators at both local and regional levels, and ultimately helps researchers identify spatiotemporal mechanism of the diseases determining interactions and relationships between spatial and non-spatial data. Spatial epidemiology is a new and emerging area of medical geography integrating geospatial sciences, environmental sciences, and epidemiology to further uncover human health-environment relationships. An introduction of GIS-based disease monitoring system to the public health surveillance system is among the important future research agenda that medical geography can significantly contribute to. Particularly, real-time monitoring methods, early-warning systems, and spatial forecasting of VBD factors will be key research fields to understand the dynamics of VBD's.

  • PDF