• Title/Summary/Keyword: spatiotemporal data

Search Result 278, Processing Time 0.029 seconds

Spatial Characteristics and Driving Forces of Cultivated Land Changes by Coupling Spatial Autocorrelation Model and Spatial-temporal Big Data

  • Hua, Wang;Yuxin, Zhu;Mengyu, Wang;Jiqiang, Niu;Xueye, Chen;Yang, Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.767-785
    • /
    • 2021
  • With the rapid development of information technology, it is now possible to analyze the spatial patterns of cultivated land and its evolution by combining GIS, geostatistical analysis models and spatiotemporal big data for the dynamic monitoring and management of cultivated land resources. The spatial pattern of cultivated land and its evolutionary patterns in Luoyang City, China from 2009 to 2019 were analyzed using spatial autocorrelation and spatial autoregressive models on the basis of GIS technology. It was found that: (1) the area of cultivated land in Luoyang decreased then increased between 2009 and 2019, with an overall increase of 0.43% in 2019 compared to 2009, with cultivated land being dominant in the overall landscape of Luoyang; (2) cultivated land holdings in Luoyang are highly spatially autocorrelated, with the 'high-high'-type area being concentrated in the border area directly north and northeast of Luoyang, while the 'low-low'-type area is concentrated in the south and in the municipal area of Luoyang, and being heavily influenced by topography and urbanization. The expansion determined during the study period mainly took place in the Luoyang City, with most of it being transferred from the 'high-low'-type area; (3) elevation, slope and industrial output values from analysis of the bivariate spatial autocorrelation and spatial autoregressive models of the drivers all had significant effects on the amount of cultivated land holdings, with elevation having a positive effect, and slope and industrial output having a negative effect.

Traffic Flow Sensing Using Wireless Signals

  • Duan, Xuting;Jiang, Hang;Tian, Daxin;Zhou, Jianshan;Zhou, Gang;E, Wenjuan;Sun, Yafu;Xia, Shudong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3858-3874
    • /
    • 2021
  • As an essential part of the urban transportation system, precise perception of the traffic flow parameters at the traffic signal intersection ensures traffic safety and fully improves the intersection's capacity. Traditional detection methods of road traffic flow parameter can be divided into the micro and the macro. The microscopic detection methods include geomagnetic induction coil technology, aerial detection technology based on the unmanned aerial vehicles (UAV) and camera video detection technology based on the fixed scene. The macroscopic detection methods include floating car data analysis technology. All the above methods have their advantages and disadvantages. Recently, indoor location methods based on wireless signals have attracted wide attention due to their applicability and low cost. This paper extends the wireless signal indoor location method to the outdoor intersection scene for traffic flow parameter estimation. In this paper, the detection scene is constructed at the intersection based on the received signal strength indication (RSSI) ranging technology extracted from the wireless signal. We extracted the RSSI data from the wireless signals sent to the road side unit (RSU) by the vehicle nodes, calibrated the RSSI ranging model, and finally obtained the traffic flow parameters of the intersection entrance road. We measured the average speed of traffic flow through multiple simulation experiments, the trajectory of traffic flow, and the spatiotemporal map at a single intersection inlet. Finally, we obtained the queue length of the inlet lane at the intersection. The simulation results of the experiment show that the RSSI ranging positioning method based on wireless signals can accurately estimate the traffic flow parameters at the intersection, which also provides a foundation for accurately estimating the traffic flow state in the future era of the Internet of Vehicles.

Multivariate Congestion Prediction using Stacked LSTM Autoencoder based Bidirectional LSTM Model

  • Vijayalakshmi, B;Thanga, Ramya S;Ramar, K
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.216-238
    • /
    • 2023
  • In intelligent transportation systems, traffic management is an important task. The accurate forecasting of traffic characteristics like flow, congestion, and density is still active research because of the non-linear nature and uncertainty of the spatiotemporal data. Inclement weather, such as rain and snow, and other special events such as holidays, accidents, and road closures have a significant impact on driving and the average speed of vehicles on the road, which lowers traffic capacity and causes congestion in a widespread manner. This work designs a model for multivariate short-term traffic congestion prediction using SLSTM_AE-BiLSTM. The proposed design consists of a Bidirectional Long Short Term Memory(BiLSTM) network to predict traffic flow value and a Convolutional Neural network (CNN) model for detecting the congestion status. This model uses spatial static temporal dynamic data. The stacked Long Short Term Memory Autoencoder (SLSTM AE) is used to encode the weather features into a reduced and more informative feature space. BiLSTM model is used to capture the features from the past and present traffic data simultaneously and also to identify the long-term dependencies. It uses the traffic data and encoded weather data to perform the traffic flow prediction. The CNN model is used to predict the recurring congestion status based on the predicted traffic flow value at a particular urban traffic network. In this work, a publicly available Caltrans PEMS dataset with traffic parameters is used. The proposed model generates the congestion prediction with an accuracy rate of 92.74% which is slightly better when compared with other deep learning models for congestion prediction.

Analysis of Spatiotemporal Changes in Groundwater Recharge and Baseflow using SWAT and BFlow Models (SWAT 모형과 BFlow를 이용한 지하수 함양, 기저유출의 시공간적 변화 분석)

  • Lee, Ji Min;Park, Youn Shik;Jung, Younghun;Cho, Jaepil;Yang, Jae Eui;Lee, Gwanjae;Kim, Ki-Sung;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.5
    • /
    • pp.549-558
    • /
    • 2014
  • Occurrence frequency of flood and drought tends to increase in last a few decades, leading to social and economic damage since the abnormality of climate changes is one of the causes for hydrologic facilities by exceedance its designed tolerance. Soil and Water Assessment Tool (SWAT) model was used in the study to estimate temporal variance of groundwater recharge and baseflow. It was limited to consider recession curve coefficients in SWAT model calibration process, thus the recession curve coefficient was estimated by the Baseflow Filter Program (BFLOW) before SWAT model calibration. Precipitation data were estimated for 2014 to 2100 using three models which are GFDL-ESM2G, IPSL-CM5A-LR, and MIROC-ESM with Representative Concentration Pathways (RCP) scenario. SWAT model was calibrated for the Soyang watershed with NSE of 0.83, and $R^2$ of 0.89. The percentage to precipitation of groundwater recharge and baseflow were 27.6% and 17.1% respectively in 2009. Streamflow, groundwater recharge, and baseflow were estimated to be increased with the estimated precipitation data. GFDL-ESM2g model provided the most large precipitation data in the 2025s, and IPSL-CM5A-LR provided the most large precipitation data in the 2055s and 2085s. Overall, groundwater recharge and baseflow displayed similar trend to the estimated precipitation data.

Cancer cluster detection using scan statistic (스캔 통계량을 이용한 암 클러스터 탐색)

  • Han, Junhee;Lee, Minjung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1193-1201
    • /
    • 2016
  • In epidemiology or etiology, we are often interested in identifying areas of elevated risk, so called, hot spot or cluster. Many existing clustering methods only tend to a result if there exists any clustering pattern in study area. Recently, however, lots of newly introduced clustering methods can identify the location, size, and shape of clusters and test if the clusters are statistically significant as well. In this paper, one of most commonly used clustering methods, scan statistic, and its implementation SaTScan software, which is freely available, will be introduced. To exemplify the usage of SaTScan software, we used cancer data from the SEER program of National Cancer Institute of U.S.A.We aimed to help researchers and practitioners, who are interested in spatial cluster detection, using female lung cancer mortality data of the SEER program.

Janus - Multi Source Event Detection and Collection System for Effective Surveillance of Criminal Activity

  • Shahabi, Cyrus;Kim, Seon Ho;Nocera, Luciano;Constantinou, Giorgos;Lu, Ying;Cai, Yinghao;Medioni, Gerard;Nevatia, Ramakant;Banaei-Kashani, Farnoush
    • Journal of Information Processing Systems
    • /
    • v.10 no.1
    • /
    • pp.1-22
    • /
    • 2014
  • Recent technological advances provide the opportunity to use large amounts of multimedia data from a multitude of sensors with different modalities (e.g., video, text) for the detection and characterization of criminal activity. Their integration can compensate for sensor and modality deficiencies by using data from other available sensors and modalities. However, building such an integrated system at the scale of neighborhood and cities is challenging due to the large amount of data to be considered and the need to ensure a short response time to potential criminal activity. In this paper, we present a system that enables multi-modal data collection at scale and automates the detection of events of interest for the surveillance and reconnaissance of criminal activity. The proposed system showcases novel analytical tools that fuse multimedia data streams to automatically detect and identify specific criminal events and activities. More specifically, the system detects and analyzes series of incidents (an incident is an occurrence or artifact relevant to a criminal activity extracted from a single media stream) in the spatiotemporal domain to extract events (actual instances of criminal events) while cross-referencing multimodal media streams and incidents in time and space to provide a comprehensive view to a human operator while avoiding information overload. We present several case studies that demonstrate how the proposed system can provide law enforcement personnel with forensic and real time tools to identify and track potential criminal activity.

Application of deep convolutional neural network for short-term precipitation forecasting using weather radar-based images

  • Le, Xuan-Hien;Jung, Sungho;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.136-136
    • /
    • 2021
  • In this study, a deep convolutional neural network (DCNN) model is proposed for short-term precipitation forecasting using weather radar-based images. The DCNN model is a combination of convolutional neural networks, autoencoder neural networks, and U-net architecture. The weather radar-based image data used here are retrieved from competition for rainfall forecasting in Korea (AI Contest for Rainfall Prediction of Hydroelectric Dam Using Public Data), organized by Dacon under the sponsorship of the Korean Water Resources Association in October 2020. This data is collected from rainy events during the rainy season (April - October) from 2010 to 2017. These images have undergone a preprocessing step to convert from weather radar data to grayscale image data before they are exploited for the competition. Accordingly, each of these gray images covers a spatial dimension of 120×120 pixels and has a corresponding temporal resolution of 10 minutes. Here, each pixel corresponds to a grid of size 4km×4km. The DCNN model is designed in this study to provide 10-minute predictive images in advance. Then, precipitation information can be obtained from these forecast images through empirical conversion formulas. Model performance is assessed by comparing the Score index, which is defined based on the ratio of MAE (mean absolute error) to CSI (critical success index) values. The competition results have demonstrated the impressive performance of the DCNN model, where the Score value is 0.530 compared to the best value from the competition of 0.500, ranking 16th out of 463 participating teams. This study's findings exhibit the potential of applying the DCNN model to short-term rainfall prediction using weather radar-based images. As a result, this model can be applied to other areas with different spatiotemporal resolutions.

  • PDF

Detection and Classification of Major Aerosol Type Using the Himawari-8/AHI Observation Data (Himawari-8/AHI 관측자료를 이용한 주요 대기 에어로솔 탐지 및 분류 방법)

  • Lee, Kwon-Ho;Lee, Kyu-Tae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.3
    • /
    • pp.493-507
    • /
    • 2018
  • Due to high spatio-temporal variability of amount and optical/microphysical properties of atmospheric aerosols, satellite-based observations have been demanded for spatiotemporal monitoring the major aerosols. Observations of the heavy aerosol episodes and determination on the dominant aerosol types from a geostationary satellite can provide a chance to prepare in advance for harmful aerosol episodes as it can repeatedly monitor the temporal evolution. A new geostationary observation sensor, namely the Advanced Himawari Imager (AHI), onboard the Himawari-8 platform, has been observing high spatial and temporal images at sixteen wavelengths from 2016. Using observed spectral visible reflectance and infrared brightness temperature (BT), the algorithm to find major aerosol type such as volcanic ash (VA), desert dust (DD), polluted aerosol (PA), and clean aerosol (CA), was developed. RGB color composite image shows dusty, hazy, and cloudy area then it can be applied for comparing aerosol detection product (ADP). The CALIPSO level 2 vertical feature mask (VFM) data and MODIS level 2 aerosol product are used to be compared with the Himawari-8/AHI ADP. The VFM products can deliver nearly coincident dataset, but not many match-ups can be returned due to presence of clouds and very narrow swath. From the case study, the percent correct (PC) values acquired from this comparisons are 0.76 for DD, 0.99 for PA, 0.87 for CA, respectively. The MODIS L2 Aerosol products can deliver nearly coincident dataset with many collocated locations over ocean and land. Increased accuracy values were acquired in Asian region as POD=0.96 over land and 0.69 over ocean, which were comparable to full disc region as POD=0.93 over land and 0.48 over ocean. The Himawari-8/AHI ADP algorithm is going to be improved continuously as well as the validation efforts will be processed by comparing the larger number of collocation data with another satellite or ground based observation data.

Comparison of the Distribution of Demersal Fish Biomass Determined by Bottom Trawl and Hydroacoustic Surveys in the Northern East China Sea in Winter, 2014 (2014년 동계 북부 동중국해 저층 트롤 및 음향학적 조사에 의한 저서어족 생물자원의 분포특성 비교)

  • Heo, Yusim;Lee, Hyungbeen;Choi, Jung Hwa;Cha, Hyung Kee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.6
    • /
    • pp.960-968
    • /
    • 2015
  • This study examined the spatiotemporal distribution of demersal fish aggregations in the Northern East China Sea by conducting a trawl survey with hydroacoustic devices. A bottom trawl was used for this survey and fish density was determined from the catch data. Acoustic data were collected at frequencies of 38 and 200 kHz from November to December 2014 and converted into the nautical area scattering coefficient (NASC, $m^2/n{\cdot}mile^2$). In the catch data analysis, the range of catch per unit area by station was $26-8,055kg/km^2$ and for the acoustic data, that of the NASC was $0.45-34.80m^2/n{\cdot}mile^2$. The values were significantly correlated. The combined results of both surveys found that the density was highest at St. 5 ($33^{\circ}$ 10.3', $126^{\circ}$ 23.3') and lowest at St. 8 ($33^{\circ}$ 20.7', $127^{\circ}$ 36.3'). The application of hydroacoustic methods offers a new approach for estimating the biomass of demersal fish aggregations.

An Interval Data Model for Tracing RFID Tag Objects (RFID 태그 객체의 위치 추적을 위한 구간 데이터 모델)

  • Ban, Chae-Hoon;Hong, Bong-Hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.578-581
    • /
    • 2007
  • For tracing tag locations, a trajectories should be modeled and indexed in radio frequency identification (RFID) systems. The trajectory of a tag can be represented as a line that connects two spatiotemporal locations captured when the tag enters and leaves the vicinity of a reader. If a tag enters but does not leave a reader, its trajectory is represented only as a point captured at entry. Because the information that the tag stays in the reader is missing from the trajectory represented only as a point, we should extend the region of a query to find the tag that remains in a reader. In this paper, we propose an interval data model of tag's trajectory in order to solve the problem. Trajectories of tags are represented as two kinds of intervals; dynamic intervals which are time-dependent lines and static intervals which are fixed lines. We also show that the interval data model has better performance than others with a cost model

  • PDF