• Title/Summary/Keyword: spatio temporal

Search Result 1,193, Processing Time 0.023 seconds

A Group Update Technique based on a Buffer Node to Store a Vehicle Location Information (차량 위치 정보 저장을 위한 버퍼 노드 기반 그룹 갱신 기법)

  • Jung, Young-Jin;Ryu, Keun-Ho
    • Journal of KIISE:Databases
    • /
    • v.33 no.1
    • /
    • pp.1-11
    • /
    • 2006
  • It is possible to track the moving vehicle as well as to develop the location based services actively according to the progress of wireless telecommunication and GPS, to the spread of network, and to the miniaturization of cellular phone. To provide these location based services, it is necessary for an index technique to store and search too much moving object data rapidly. However the existing indices require a lot of costs to insert the data because they store every position data into the index directly. To solve this problem in this paper, we propose a buffer node operation and design a GU-tree(Group Update tree). The proposed buffer node method reduces the input cost effectively since the operation stores the moving object location data in a group, the buffer node as the unit of a non-leaf node. hnd then we confirm the effect of the buffer node operation which reduces the insert cost and increase the search performance in a time slice query from the experiment to compare the operation with some existing indices. The proposed tufter node operation would be useful in the environment to update locations frequently such as a transportation vehicle management and a tour-guide system.

Effective Pose-based Approach with Pose Estimation for Emotional Action Recognition (자세 예측을 이용한 효과적인 자세 기반 감정 동작 인식)

  • Kim, Jin Ok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.3
    • /
    • pp.209-218
    • /
    • 2013
  • Early researches in human action recognition have focused on tracking and classifying articulated body motions. Such methods required accurate segmentation of body parts, which is a sticky task, particularly under realistic imaging conditions. Recent trends of work have become popular towards the use of more and low-level appearance features such as spatio-temporal interest points. Given the great progress in pose estimation over the past few years, redefined views about pose-based approach are needed. This paper addresses the issues of whether it is sufficient to train a classifier only on low-level appearance features in appearance approach and proposes effective pose-based approach with pose estimation for emotional action recognition. In order for these questions to be solved, we compare the performance of pose-based, appearance-based and its combination-based features respectively with respect to scenario of various emotional action recognition. The experiment results show that pose-based features outperform low-level appearance-based approach of features, even when heavily spoiled by noise, suggesting that pose-based approach with pose estimation is beneficial for the emotional action recognition.

Future Climate Change Impact Assessment of Chungju Dam Inflow Considering Selection of GCMs and Downscaling Technique (GCM 및 상세화 기법 선정을 고려한 충주댐 유입량 기후변화 영향 평가)

  • Kim, Chul Gyum;Park, Jihoon;Cho, Jaepil
    • Journal of Climate Change Research
    • /
    • v.9 no.1
    • /
    • pp.47-58
    • /
    • 2018
  • In this study, we evaluated the uncertainty in the process of selecting GCM and downscaling method for assessing the impact of climate change, and influence of user-centered climate change information on reproducibility of Chungju Dam inflow was analyzed. First, we selected the top 16 GCMs through the evaluation of spatio-temporal reproducibility of 29 raw GCMs using 30-year average of 10-day precipitation without any bias-correction. The climate extreme indices including annual total precipitation and annual maximum 1-day precipitation were selected as the relevant indices to the dam inflow. The Simple Quantile Mapping (SQM) downscaling method was selected through the evaluation of reproducibility of selected indices and spatial correlation among weather stations. SWAT simulation results for the past 30 years period by considering limitations in weather input showed the satisfactory results with monthly model efficiency of 0.92. The error in average dam inflow according to selection of GCMs and downscaling method showed the bests result when 16 GCMs selected raw GCM analysi were used. It was found that selection of downscaling method rather than selection of GCM is more is important in overall uncertainties. The average inflow for the future period increased in all RCP scenarios as time goes on from near-future to far-future periods. Also, it was predicted that the inflow volume will be higher in the RCP 8.5 scenario than in the RCP 4.5 scenario in all future periods. Maximum daily inflow, which is important for flood control, showed a high changing rate more than twice as much as the average inflow amount. It is also important to understand the seasonal fluctuation of the inflow for the dam management purpose. Both average inflow and maximum inflow showed a tendency to increase mainly in July and August during near-future period while average and maximum inflows increased through the whole period of months in both mid-future and far-future periods.

Leibniz-Clark Controversy on the Nature of Space and Hole Argument (공간의 본성에 대한 라이프니츠-클라크 논쟁과 홀 논변)

  • Yang, Kyoung-eun
    • Journal of Korean Philosophical Society
    • /
    • v.144
    • /
    • pp.235-256
    • /
    • 2017
  • This essay considers Leibniz-Clark correspondence on the nature of space and hole argument. The ontology of space had been debated under the name of substantivalism-relationism controversy. The debates between the two parties are concerned with the nature of existence of parts of space-time. Substantivalism claims that the point of space-time has existence analogous to that of material substance. Relationism argues that space-time should be understood as the framework of possible spatio-temporal relations between bodies. Although these two approaches attempt to respect theoretical context, it seems that the problems of these two interpretive schemes stems from the lack of understanding of the structure of space-time theories, especially how space-time is connected with the laws of motion. In order to appreciate the substance-relation controversy without deviating from the context of space-time theories, it is necessary then to capture how space-time theories are constituted. This essay offers the clear connection of ontology of space-time with present practices of theoretical physicists.

Basin-scale PMF Estimation Method by considering Spatio-temporal Characteristics (시·공간성을 고려한 유역기반의 PMF 산정)

  • Kim, Youngkyu;Kim, Yeonsu;Yu, Wansik;Oh, Sungryul;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.139-139
    • /
    • 2016
  • 가능최대홍수량(Probable Maximum Flood, PMF)이란 대규모 수공구조물을 설계하고자 할 때 막대한 경제적 손실 및 인명피해 등을 막기 위해 기준으로 삼는 설계홍수량이며, 통계학적으로는 약 10,000년 빈도에 해당된다. 우리나라의 호우 특성은 방위, 진행방향 및 위에 따른 해석이 매우 복잡하여 강우를 정형화하기 어렵다. Kim and Won(2004)은 이동성 호우의 경우 강우의 깊이-면적-지속기간(Rainfall Depth-Area-Duration)의 분석결과에서 상당한 오차를 야기하는 문제점을 지닌다고 주장하였다. 따라서 오차를 포함한 DAD의 산정결과는 가능최대강수량(Probable Maximum Precipitation, PMP) 및 가능최대홍수량 산정에도 영향을 미치기 때문에 정확도 높은 DAD 분석을 통한 PMF 산정이 요구된다. 본 연구에서는 유역을 선정하고 각 지점의 시계열 강우 자료를 활용하여 공간분포화한 강우자료에 격자기반의 자동 강우장 탐색기법을 이용하여 DAD 분석을 실시하였다. 기존의 PMP 산정방법에서는 한반도 전역에서 발생했던 130 mm이상의 호우사상을 선정한 후에 각 호우의 범위에 있는 우량관측소의 강우자료를 이용하여 PMP를 산정한다. 그렇기 때문에 만약 상대적으로 긴 지속기간의 경우 호우의 범위가 우리나라 전역을 포함할 가능성이 크기 때문에 PMP 산정방법은 복잡하고, 기상이변이 잦지 않는 지역에서 산정된 PMP를 이용하여 PMF를 산정할 경우, 유역의 특성을 반영하지 않았기 때문에 과대산정의 우려가 있다. 이에 따라 본 연구에서는 먼저 연구대상유역을 선정한 뒤, 유역 내에 발생했던 호우경보와 호우주의보를 기준으로 호우사상을 선정하여 DAD 분석 후 PMP를 산정하였다. 그 후, 강우-유출관계를 파악하여 PMF를 산정하였다.

  • PDF

Distribution of TOC and metals in the surface sediments of the Lake Shihwa (시화호 표층 퇴적물의 유기탄소와 금속의 분포)

  • Kim, Kyung-Tae;Kim, Eun-Soo;Cho, Sung-Rok;Park, Jun-Kun;Kim, Jong-Kun;Lee, Jeong-Moo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2008.05a
    • /
    • pp.159-164
    • /
    • 2008
  • In order to understand the spatio-temporal distribution of geochemical parametrs in surface sediments of the artificial Lake Shihwa in the vicinity of Kyunggi Hay in Korea, surface sediments were sampled at 14 sites in July 2007 and analyzed by CHN analyzer and ICP/MS. Metal concentrations in the sediments tended to be decreasing from the head to the mouth of the Lake Shihwa because of extreme pollutant discharge from various kinds of anthropogenic sources such as the Banweol and Shihwa Industrial Complex and cities. With the deposition of fine-grained sediments, high metal concentrations were also observed in the central part of lake. Although various programs(improvement of wastewater collection and treatment system, sea-lake water exchange etc) to improve the environmental conditions around the Lake Shihwa after dike construction were carried out, it was not dear to reach a good environmental quality. Therefore, further environmental programs should be conducted continuously for environmental improvement.

  • PDF

Impact of Road Traffic Characteristics on Environmental Factors Using IoT Urban Big Data (IoT 도시빅데이터를 활용한 도로교통특성과 유해환경요인 간 영향관계 분석)

  • Park, Byeong hun;Yoo, Dayoung;Park, Dongjoo;Hong, Jungyeol
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.5
    • /
    • pp.130-145
    • /
    • 2021
  • As part of the Smart Seoul policy, the importance of using big urban data is being highlighted. Furthermore interest in the impact of transportation-related urban environmental factors such as PM10 and noise on citizen's quality of life is steadily increasing. This study established the integrated DB by matching IoT big data with transportation data, including traffic volume and speed in the microscopic Spatio-temporal scope. This data analyzed the impact of a spatial unit in the road-effect zone on environmental risk level. In addition, spatial units with similar characteristics of road traffic and environmental factors were clustered. The results of this study can provide the basis for systematically establishing environmental risk management of urban spatial units such as PM10 or PM2.5 hot-spot and noise hot-spot.

Analysis of the Effect of Differences in Spatial Resolution of Land-use/cover Data on the Simulation of CALPUFF (토지피복 자료의 해상도 차이가 CALPUFF 농도 모의에 미치는 영향 분석)

  • Hwang, Suyeon;Ham, Jungsoo;Lee, Youngjin;Choi, Jinmu
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1461-1473
    • /
    • 2021
  • The purpose of this study is to ascertain how the level of resolution of land cover data affects on the local distribution and diffusion of fine dust. the CALPUFF model, which considers the spatio-temporal terrain conditions and changes in weather conditions, was used to estimate PM10 concentration in the Pyeongchon, Anyang-si, Gyeonggi-do. Three different resolutions of land cover data including 20 m, 50 m, and 100 m were compared as the input of the modeling. Using higher resolution land cover data (20 m), the wind speed of the simulated region was the largest and the PM10 concentration was the lowest. Through this study, we confirm that the resolution level of land-use/cover data can affect the local distribution and diffusion of fine dust, which can be detected by CALPUFF. Therefore, when using CALPUFF to simulate fine dust in the future, it can be suggested that checking the impact on spatial resolution according to the form of land cover in advance and proceeding with the simulation can achieve mote accurate results.

Evaluation of Validity and Reliability of Inertial Measurement Unit-Based Gait Analysis Systems

  • Cho, Young-Shin;Jang, Seong-Ho;Cho, Jae-Sung;Kim, Mi-Jung;Lee, Hyeok Dong;Lee, Sung Young;Moon, Sang-Bok
    • Annals of Rehabilitation Medicine
    • /
    • v.42 no.6
    • /
    • pp.872-883
    • /
    • 2018
  • Objective To replace camera-based three-dimensional motion analyzers which are widely used to analyze body movements and gait but are also costly and require a large dedicated space, this study evaluates the validity and reliability of inertial measurement unit (IMU)-based systems by analyzing their spatio-temporal and kinematic measurement parameters. Methods The investigation was conducted in three separate hospitals with three healthy participants. IMUs were attached to the abdomen as well as the thigh, shank, and foot of both legs of each participant. Each participant then completed a 10-m gait course 10 times. During each gait cycle, the hips, knees, and ankle joints were observed from the sagittal, frontal, and transverse planes. The experiments were conducted with both a camera-based system and an IMU-based system. The measured gait analysis data were evaluated for validity and reliability using root mean square error (RMSE) and intraclass correlation coefficient (ICC) analyses. Results The differences between the RMSE values of the two systems determined through kinematic parameters ranged from a minimum of 1.83 to a maximum of 3.98 with a tolerance close to 1%. The results of this study also confirmed the reliability of the IMU-based system, and all of the variables showed a statistically high ICC. Conclusion These results confirmed that IMU-based systems can reliably replace camera-based systems for clinical body motion and gait analyses.

Kalman Filtering-based Traffic Prediction for Software Defined Intra-data Center Networks

  • Mbous, Jacques;Jiang, Tao;Tang, Ming;Fu, Songnian;Liu, Deming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2964-2985
    • /
    • 2019
  • Global data center IP traffic is expected to reach 20.6 zettabytes (ZB) by the end of 2021. Intra-data center networks (Intra-DCN) will account for 71.5% of the data center traffic flow and will be the largest portion of the traffic. The understanding of traffic distribution in IntraDCN is still sketchy. It causes significant amount of bandwidth to go unutilized, and creates avoidable choke points. Conventional transport protocols such as Optical Packet Switching (OPS) and Optical Burst Switching (OBS) allow a one-sided view of the traffic flow in the network. This therefore causes disjointed and uncoordinated decision-making at each node. For effective resource planning, there is the need to consider joining the distributed with centralized management which anticipates the system's needs and regulates the entire network. Methods derived from Kalman filters have proved effective in planning road networks. Considering the network available bandwidth as data transport highways, we propose an intelligent enhanced SDN concept applied to OBS architecture. A management plane (MP) is added to conventional control (CP) and data planes (DP). The MP assembles the traffic spatio-temporal parameters from ingress nodes, uses Kalman filtering prediction-based algorithm to estimate traffic demand. Prior to packets arrival at edges nodes, it regularly forwards updates of resources allocation to CPs. Simulations were done on a hybrid scheme (1+1) and on the centralized OBS. The results demonstrated that the proposition decreases the packet loss ratio. It also improves network latency and throughput-up to 84 and 51%, respectively, versus the traditional scheme.