본 논문은 인 메모리 시스템인 Spark에 기반 한 공간 빅 데이터 분석 프로토타입을 구현하고, 이를 기반으로 공간 분할 알고리즘에 따른 성능을 비교하였다. 클러스터 컴퓨팅 환경에서 빅 데이터의 컴퓨팅 부하를 균형 분산하기 위해, 빅 데이터는 일정 크기의 순차적 블록 단위로 분할된다. 기존의 연구에서 하둡 기반의 공간 빅 데이터 시스템의 경우 일반 순차 분할 방법보다 공간에 따른 분할 방법이 효과적임이 제시되었다. 하둡 기반의 공간 빅 데이터 시스템들은 원 데이터를 그대로 공간 분할된 블록에 저장한다. 하지만 제안된 Spark 기반의 공간 분석 시스템에서는 검색 효율성을 위해 공간 데이터가 메모리 데이터 구조로 변환되어 공간 블록에 저장되는 차이점이 있다. 그러므로 이 논문은 인 메모리 공간 빅 데이터 프로토타입과 공간 분할 블록 저장 기법을 제시하였다, 또한, 기존의 공간 분할 알고리즘들을 제안된 프로토타입에서 성능 비교를 하여 인 메모리 환경인 Spark 기반 빅 데이터 시스템에서 적합한 공간 분할 전략을 제시하였다. 실험에서는 공간 분할 알고리즘에 대한 질의 수행 시간에 대하여 비교를 하였고, BSP 알고리즘이 가장 좋은 성능을 보여주는 것을 확인할 수 있었다.
시간의 흐름에 따라 누적되는 대용량의 과거 위치를 관리하는 이동 객체 데이타베이스에서 이동 객체의 과거 위치를 효율적으로 검색하기 위해서는 이동 객체의 특성을 고려한 색인 구조가 필요하다. 그러나, 영역 질의 성능이 우수한 다차원 색인인 KDB-tree를 이동 객체 데이타베이스에 적용할 경우 시간 도메인이 증가하는 이동 객체 데이타베이스의 특성으로 인해 공간 도메인 가중 분할이 발생한다. 공간 도메인 가중 분할은 하나의 노드가 차지하는 MBR의 공간 영역이 분할 횟수에 반비례하게 감소되어 시공 간 영역 질의 처리시 색인의 검색 비용을 증가시키는 문제가 있다. 이 논문에서는 이동 객체 데이타베이스에서 시공간 영역 질의를 효율적으로 처리하기 위한 KDB-tree의 동적 분할 정책을 제안한다. 동적 분할 정책은 공간 우선 분할 방법을 적용하는 분할 도메인 선정 방법과 포인터 페이지에서 공간 활용도를 최대화시킬 수 있는 최근 시간 분할 정책, 영역 페이지에서 적용되는 최후 시간 분할 정책으로 구성된다. 제안한 동적 분할 정책의 성능을 평가하기 위해 3DR-tree, MV3R-tree, KDB-tree와의 성능을 비교한다. 영역 질의를 위한 성능 평가에서 동적 분할 정책을 적용한 MKDB-tree는 기존 색인에 비해 평균 30% 이상의 노드 접근 회수를 감소시킨다.
This study is concerned with the accuracy and the patterns when different methods was used in interpolation task. Although 3 methods employed the same modality for input (visual) and for output (manual responding), they differed in central processing, which method 1 is relatively more tendency of verbal processing, method 2 is realtively more tendency of spatial processing and method 3 needed a number of switching code (verbal/spatial) performing task. Split-plot design was adopted, which whole plot consisted of methods (3), orientations (horizon, vertical), base-line sizes (300, 500, 700 pixels) and split plot consisted of target locations (1-99). The results showed the anchor effect and the range effect. Method 2, method 3 and method 1 that order was better accuracy. ANOVA showed that the accuracy was significantly influenced by the method, the location of target, and its interactions ($method{\times}location$, $size{\times}location$). Analysis of error data, response time and frequency of under, just, over estimate indicated that a systematic error pattern was made in task and methods changed not only the performance but also the pattern. The results provided support for the importance of the multiple resources theory in accounting for S-C-R compatibility and task performance. They are discussed in terms of multiple resources theory and guidelines for system design is suggested by the S-C-R compatibility.
Hyperspectral images feature a relatively narrow band and are easily disturbed by noise. Accurate estimation of the types and parameters of noise in hyperspectral images can provide prior knowledge for subsequent image processing. Existing hyperspectral-noise estimation methods often pay more attention to the use of spectral information while ignoring the spatial information of hyperspectral images. To evaluate the noise in hyperspectral images more accurately, we have proposed a spectral-spatial cooperative noise-evaluation method. First, the feature of spatial information was extracted by Gabor-filter and K-means algorithms. Then, texture edges were extracted by the Otsu threshold algorithm, and homogeneous image blocks were automatically separated. After that, signal and noise values for each pixel in homogeneous blocks were split with a multiple-linear-regression model. By experiments with both simulated and real hyperspectral images, the proposed method was demonstrated to be effective and accurate, and the composition of the hyperspectral image was verified.
최근 이동 중인 경로 상에 존재하는 모든 지점에 대해 k개의 최근접 객체를 탐색하는 연속 k 최근접 객체 탐색 질의가 위치기반 서비스와 지능형 교통 시스템의 응용 분야에 폭넓게 사용되고 있다. 이러한 질의는 위와 같은 응용에 빠른 응답을 요구하고, 공간 네트워크 데이터베이스에 적용가능 해야 한다. 이 논문에서는 공간네트워크 상에서 움직이는 질의 객체를 위한 최근접 객체를 효율적으로 탐색하는 새로운 기법을 제안하고자 한다. 제안하는 기법은 다수의 분할점과 그에 상응하는 k개의 최근접 객체 집합들을 결과로 추출하며, POI들 간에는 순서가 없다. 분석을 통해 제안한 기법에 기존기법에 비해 우수함을 보인다.
Laser scanning has become a viable technique for the collection of a large amount of accurate 3D point data densely distributed on the scanned object surface. The inherent 3D nature of the sub-randomly distributed point cloud provides abundant spatial information. To explore valuable spatial information from laser scanned data becomes an active research topic, for instance extracting digital elevation model, building models, and vegetation volumes. The sub-randomly distributed point cloud should be segmented and classified before the extraction of spatial information. This paper investigates some exist segmentation methods, and then proposes an octree-based split-and-merge segmentation method to divide lidar data into clusters belonging to 3D planes. Therefore, the classification of lidar data can be performed based on the derived attributes of extracted 3D planes. The test results of both ground and airborne lidar data show the potential of applying this method to extract spatial features from lidar data.
위치기반서비스와 지능형교통시스템 등의 응용분야에서는 이동 중인 경로 상에 존재하는 모든 지점에 대해 k개의 최근접 객체를 탐색하는 연속 k 최근접 객체 탐색 질의가 폭넓게 사용되고 있다. 최근접 질의는 위와 같은 응용에 빠른 응답을 요구하고, 공간 네트워크 데이터베이스에 적용가능해야 한다. 또한 잦은 POI(Point of Interest) 객체의 변경에 유연하게 대처해야 한다. 이 논문에서는 도로 네트워크에서 이동 중인 질의 객체를 위한 최근접 객체를 효율적으로 탐색하는 새로운 기법을 제안하고자 한다. 제안하는 기법은 다수의 분할점과 그에 상응하는 k개의 최근접 객체 집합들을 결과로 추출하며, POI들 간에는 순서가 없다. 실제 데이터를 이용한 실험은 제안한 기법에 기존 기법에 비해 우수함을 보인다. 최적의 조건에서 제안한 기법이 기존 기법에 비해 짧은 연산 시간(15%)을 보인다.
본 논문은 영역 모니터링 질의를 효율적으로 처리하는 기법에 대해서 다룬다. 기존의 영역 모니터링 질의 처리를 위해서 사용된 중앙 집중식 기법은 이동 객체가 서버에 주기적으로 자신의 위치 업데이트를 전송하고, 서버가 질의 결과를 지속적으로 업데이트 한다고 가정한다. 그러나 이러한 가정은 많은 양의 위치 데이터 전송으로 인해 시스템 성능을 크게 저하시킨다. 최근, 영역 모니터링 질의 처리를 위한 몇 가지 분산 기법들이 제안되었다. 분산 기법에서 서버는 각 이동 객체에게 I) 작업 공간의 서브 공간인 상주 도메인과 ii) 몇 개의 인접 질의 영역을 할당한다. 각 이동 객체는 상주 도메인을 벗어나거나 질의 영역의 경계를 가로지를 경우에만 서버에게 자신의 위치를 전송한다. 상주 도메인 및 인접 질의 영역을 이동 객체에 할당하기 위해서 서버는 작업 공간을 반복적으로 동일하게 반으로 분할하여 생성되는 질의 색인 구조를 사용한다. 하지만 이와 같은 색인 구조는 불필요한 분할이 발생하게 되므로 시스템의 성능 저하를 발생시킨다. 본 논문에서는 불필요한 분할을 줄이기 위해서 적응 분할 기법을 제안한다. 적응 분할 기법은 I) 질의 영역과 결과 서브 공간의 공간적 관계와 ii) 질의 영역의 분포를 고려하여 동적으로 작업 공간을 분할한다. 본 논문에서는 기존의 색인 구조인 QR-tree에 본 논문에서 제안한 새로운 분할 기법을 적용하였으며, 시뮬레이션을 통해 제안 된 분할 기법의 효율성을 검증했다.
CU 정보 중에서 분할 정보 및 스킵 정보는 공간적으로 인접한 CU뿐만 아니라 시간적으로 대응되는 CU와 매우 유사한 특성을 지닌다. 본 논문은 CU 정보를 부호화할 때, 공간적 상관도뿐만 아니라 시간적 상관도를 이용함으로써 부호화 효율을 향상시키는 방법을 제안한다. CABAC의 경우에는 CU 분할정보 및 스킵 정보에 대한 문맥모델을 생성할 때 시간적으로 대응되는 CU의 정보를 활용하고, CAVLC의 경우에는 시간적으로 대응되는 CU정보를 이용하여 현재 CU 정보들을 유추하는 방법을 이용하여 부호화하였다. 그 결과 현재까지 나온 HM3.0와 비교하여 CABAC에서 0.1%~0.6%의 성능 향상을 보였고 CAVLC에서는 0.1%~0.4%의 성능 향상이 있었고, 특히 시간적으로 가까운 참조프레임을 사용하는 저지연 환경에서 더 좋은 성능을 보였다.
자동차, 모바일 폰, PDA와 같은 이동 객체를 모바일 데이터베이스에 정확히 색인하기 위해서는 위치 정보를 계속적으로 변경해주어야 하며 또한 많은 시간이 소요된다. 이 논문에서는 효율적인 모바일 지도 서비스를 위한 이동 객체의 공간 색인 기법을 제안한다. 구체적으로 각 이동 객체의 위치 변경 보고 즉시 병경하는 방법과 일정 주기마다 전체 객체에 대해 재색인하는 방법의 장단점을 분석하고, 데이터베이스 변경 횟수의 최소화를 위해 이동체의 특성을 감안한 새로운 버켓 분할 방법을 제안한다. 이동 객체 환경에서의 실험 결과는 제안한 방법론이 모바일 지도 서비스에 적합함을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.