• 제목/요약/키워드: spatial split method

검색결과 34건 처리시간 0.028초

Spark 기반 공간 분석에서 공간 분할의 성능 비교 (Performance Comparison of Spatial Split Algorithms for Spatial Data Analysis on Spark)

  • 양평우;유기현;남광우
    • 대한공간정보학회지
    • /
    • 제25권1호
    • /
    • pp.29-36
    • /
    • 2017
  • 본 논문은 인 메모리 시스템인 Spark에 기반 한 공간 빅 데이터 분석 프로토타입을 구현하고, 이를 기반으로 공간 분할 알고리즘에 따른 성능을 비교하였다. 클러스터 컴퓨팅 환경에서 빅 데이터의 컴퓨팅 부하를 균형 분산하기 위해, 빅 데이터는 일정 크기의 순차적 블록 단위로 분할된다. 기존의 연구에서 하둡 기반의 공간 빅 데이터 시스템의 경우 일반 순차 분할 방법보다 공간에 따른 분할 방법이 효과적임이 제시되었다. 하둡 기반의 공간 빅 데이터 시스템들은 원 데이터를 그대로 공간 분할된 블록에 저장한다. 하지만 제안된 Spark 기반의 공간 분석 시스템에서는 검색 효율성을 위해 공간 데이터가 메모리 데이터 구조로 변환되어 공간 블록에 저장되는 차이점이 있다. 그러므로 이 논문은 인 메모리 공간 빅 데이터 프로토타입과 공간 분할 블록 저장 기법을 제시하였다, 또한, 기존의 공간 분할 알고리즘들을 제안된 프로토타입에서 성능 비교를 하여 인 메모리 환경인 Spark 기반 빅 데이터 시스템에서 적합한 공간 분할 전략을 제시하였다. 실험에서는 공간 분할 알고리즘에 대한 질의 수행 시간에 대하여 비교를 하였고, BSP 알고리즘이 가장 좋은 성능을 보여주는 것을 확인할 수 있었다.

이동 객체 데이타베이스에서 KDB-tree의 동적 분할 정책 (The Dynamic Split Policy of the KDB-Tree in Moving Objects Databases)

  • 임덕성;이창헌;홍봉희
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제33권4호
    • /
    • pp.396-408
    • /
    • 2006
  • 시간의 흐름에 따라 누적되는 대용량의 과거 위치를 관리하는 이동 객체 데이타베이스에서 이동 객체의 과거 위치를 효율적으로 검색하기 위해서는 이동 객체의 특성을 고려한 색인 구조가 필요하다. 그러나, 영역 질의 성능이 우수한 다차원 색인인 KDB-tree를 이동 객체 데이타베이스에 적용할 경우 시간 도메인이 증가하는 이동 객체 데이타베이스의 특성으로 인해 공간 도메인 가중 분할이 발생한다. 공간 도메인 가중 분할은 하나의 노드가 차지하는 MBR의 공간 영역이 분할 횟수에 반비례하게 감소되어 시공 간 영역 질의 처리시 색인의 검색 비용을 증가시키는 문제가 있다. 이 논문에서는 이동 객체 데이타베이스에서 시공간 영역 질의를 효율적으로 처리하기 위한 KDB-tree의 동적 분할 정책을 제안한다. 동적 분할 정책은 공간 우선 분할 방법을 적용하는 분할 도메인 선정 방법과 포인터 페이지에서 공간 활용도를 최대화시킬 수 있는 최근 시간 분할 정책, 영역 페이지에서 적용되는 최후 시간 분할 정책으로 구성된다. 제안한 동적 분할 정책의 성능을 평가하기 위해 3DR-tree, MV3R-tree, KDB-tree와의 성능을 비교한다. 영역 질의를 위한 성능 평가에서 동적 분할 정책을 적용한 MKDB-tree는 기존 색인에 비해 평균 30% 이상의 노드 접근 회수를 감소시킨다.

CRT 표시장치에서 두 형태의 크기-내삽 추정 방법의 비교 연구 : 상사자극-계수 반응과 계수 자극-상사반응 (Comparison of Two Methods for Size-interpolation on CRT Display : Analog Stimulus-Digital Response Vs. Digital Stimulus-Analog Response)

  • 노재호
    • 산업기술연구
    • /
    • 제14권
    • /
    • pp.127-140
    • /
    • 1994
  • This study is concerned with the accuracy and the patterns when different methods was used in interpolation task. Although 3 methods employed the same modality for input (visual) and for output (manual responding), they differed in central processing, which method 1 is relatively more tendency of verbal processing, method 2 is realtively more tendency of spatial processing and method 3 needed a number of switching code (verbal/spatial) performing task. Split-plot design was adopted, which whole plot consisted of methods (3), orientations (horizon, vertical), base-line sizes (300, 500, 700 pixels) and split plot consisted of target locations (1-99). The results showed the anchor effect and the range effect. Method 2, method 3 and method 1 that order was better accuracy. ANOVA showed that the accuracy was significantly influenced by the method, the location of target, and its interactions ($method{\times}location$, $size{\times}location$). Analysis of error data, response time and frequency of under, just, over estimate indicated that a systematic error pattern was made in task and methods changed not only the performance but also the pattern. The results provided support for the importance of the multiple resources theory in accounting for S-C-R compatibility and task performance. They are discussed in terms of multiple resources theory and guidelines for system design is suggested by the S-C-R compatibility.

  • PDF

A Spectral-spatial Cooperative Noise-evaluation Method for Hyperspectral Imaging

  • Zhou, Bing;Li, Bingxuan;He, Xuan;Liu, Hexiong
    • Current Optics and Photonics
    • /
    • 제4권6호
    • /
    • pp.530-539
    • /
    • 2020
  • Hyperspectral images feature a relatively narrow band and are easily disturbed by noise. Accurate estimation of the types and parameters of noise in hyperspectral images can provide prior knowledge for subsequent image processing. Existing hyperspectral-noise estimation methods often pay more attention to the use of spectral information while ignoring the spatial information of hyperspectral images. To evaluate the noise in hyperspectral images more accurately, we have proposed a spectral-spatial cooperative noise-evaluation method. First, the feature of spatial information was extracted by Gabor-filter and K-means algorithms. Then, texture edges were extracted by the Otsu threshold algorithm, and homogeneous image blocks were automatically separated. After that, signal and noise values for each pixel in homogeneous blocks were split with a multiple-linear-regression model. By experiments with both simulated and real hyperspectral images, the proposed method was demonstrated to be effective and accurate, and the composition of the hyperspectral image was verified.

무순위 연속 k 최근접 객체 탐색을 위한 효율적인 분할점 추출기법 (A Efficient Method of Extracting Split Points for Continuous k Nearest Neighbor Search Without Order)

  • 김진덕
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 춘계학술대회
    • /
    • pp.927-930
    • /
    • 2010
  • 최근 이동 중인 경로 상에 존재하는 모든 지점에 대해 k개의 최근접 객체를 탐색하는 연속 k 최근접 객체 탐색 질의가 위치기반 서비스와 지능형 교통 시스템의 응용 분야에 폭넓게 사용되고 있다. 이러한 질의는 위와 같은 응용에 빠른 응답을 요구하고, 공간 네트워크 데이터베이스에 적용가능 해야 한다. 이 논문에서는 공간네트워크 상에서 움직이는 질의 객체를 위한 최근접 객체를 효율적으로 탐색하는 새로운 기법을 제안하고자 한다. 제안하는 기법은 다수의 분할점과 그에 상응하는 k개의 최근접 객체 집합들을 결과로 추출하며, POI들 간에는 순서가 없다. 분석을 통해 제안한 기법에 기존기법에 비해 우수함을 보인다.

  • PDF

Segmentation and Classification of Lidar data

  • Tseng, Yi-Hsing;Wang, Miao
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.153-155
    • /
    • 2003
  • Laser scanning has become a viable technique for the collection of a large amount of accurate 3D point data densely distributed on the scanned object surface. The inherent 3D nature of the sub-randomly distributed point cloud provides abundant spatial information. To explore valuable spatial information from laser scanned data becomes an active research topic, for instance extracting digital elevation model, building models, and vegetation volumes. The sub-randomly distributed point cloud should be segmented and classified before the extraction of spatial information. This paper investigates some exist segmentation methods, and then proposes an octree-based split-and-merge segmentation method to divide lidar data into clusters belonging to 3D planes. Therefore, the classification of lidar data can be performed based on the derived attributes of extracted 3D planes. The test results of both ground and airborne lidar data show the potential of applying this method to extract spatial features from lidar data.

  • PDF

부분순위 연속 k 최근접 객체 탐색 기법 (A Method for Continuous k Nearest Neighbor Search With Partial Order)

  • 김진덕
    • 한국정보통신학회논문지
    • /
    • 제15권1호
    • /
    • pp.126-132
    • /
    • 2011
  • 위치기반서비스와 지능형교통시스템 등의 응용분야에서는 이동 중인 경로 상에 존재하는 모든 지점에 대해 k개의 최근접 객체를 탐색하는 연속 k 최근접 객체 탐색 질의가 폭넓게 사용되고 있다. 최근접 질의는 위와 같은 응용에 빠른 응답을 요구하고, 공간 네트워크 데이터베이스에 적용가능해야 한다. 또한 잦은 POI(Point of Interest) 객체의 변경에 유연하게 대처해야 한다. 이 논문에서는 도로 네트워크에서 이동 중인 질의 객체를 위한 최근접 객체를 효율적으로 탐색하는 새로운 기법을 제안하고자 한다. 제안하는 기법은 다수의 분할점과 그에 상응하는 k개의 최근접 객체 집합들을 결과로 추출하며, POI들 간에는 순서가 없다. 실제 데이터를 이용한 실험은 제안한 기법에 기존 기법에 비해 우수함을 보인다. 최적의 조건에서 제안한 기법이 기존 기법에 비해 짧은 연산 시간(15%)을 보인다.

영역 모니터링 질의 처리를 위한 공간 분할 기법 (A Spatial Split Method for Processing of Region Monitoring Queries)

  • 정재우;정하림;김응모
    • 인터넷정보학회논문지
    • /
    • 제19권1호
    • /
    • pp.67-76
    • /
    • 2018
  • 본 논문은 영역 모니터링 질의를 효율적으로 처리하는 기법에 대해서 다룬다. 기존의 영역 모니터링 질의 처리를 위해서 사용된 중앙 집중식 기법은 이동 객체가 서버에 주기적으로 자신의 위치 업데이트를 전송하고, 서버가 질의 결과를 지속적으로 업데이트 한다고 가정한다. 그러나 이러한 가정은 많은 양의 위치 데이터 전송으로 인해 시스템 성능을 크게 저하시킨다. 최근, 영역 모니터링 질의 처리를 위한 몇 가지 분산 기법들이 제안되었다. 분산 기법에서 서버는 각 이동 객체에게 I) 작업 공간의 서브 공간인 상주 도메인과 ii) 몇 개의 인접 질의 영역을 할당한다. 각 이동 객체는 상주 도메인을 벗어나거나 질의 영역의 경계를 가로지를 경우에만 서버에게 자신의 위치를 전송한다. 상주 도메인 및 인접 질의 영역을 이동 객체에 할당하기 위해서 서버는 작업 공간을 반복적으로 동일하게 반으로 분할하여 생성되는 질의 색인 구조를 사용한다. 하지만 이와 같은 색인 구조는 불필요한 분할이 발생하게 되므로 시스템의 성능 저하를 발생시킨다. 본 논문에서는 불필요한 분할을 줄이기 위해서 적응 분할 기법을 제안한다. 적응 분할 기법은 I) 질의 영역과 결과 서브 공간의 공간적 관계와 ii) 질의 영역의 분포를 고려하여 동적으로 작업 공간을 분할한다. 본 논문에서는 기존의 색인 구조인 QR-tree에 본 논문에서 제안한 새로운 분할 기법을 적용하였으며, 시뮬레이션을 통해 제안 된 분할 기법의 효율성을 검증했다.

HEVC에서 시공간적 상관관계를 이용한 엔트로피 부호화 방법 (A Entropy Coding Method using Temporal and Spatial Correlation on HEVC)

  • 김태룡;김경용;이한수;박광훈
    • 방송공학회논문지
    • /
    • 제17권1호
    • /
    • pp.191-194
    • /
    • 2012
  • CU 정보 중에서 분할 정보 및 스킵 정보는 공간적으로 인접한 CU뿐만 아니라 시간적으로 대응되는 CU와 매우 유사한 특성을 지닌다. 본 논문은 CU 정보를 부호화할 때, 공간적 상관도뿐만 아니라 시간적 상관도를 이용함으로써 부호화 효율을 향상시키는 방법을 제안한다. CABAC의 경우에는 CU 분할정보 및 스킵 정보에 대한 문맥모델을 생성할 때 시간적으로 대응되는 CU의 정보를 활용하고, CAVLC의 경우에는 시간적으로 대응되는 CU정보를 이용하여 현재 CU 정보들을 유추하는 방법을 이용하여 부호화하였다. 그 결과 현재까지 나온 HM3.0와 비교하여 CABAC에서 0.1%~0.6%의 성능 향상을 보였고 CAVLC에서는 0.1%~0.4%의 성능 향상이 있었고, 특히 시간적으로 가까운 참조프레임을 사용하는 저지연 환경에서 더 좋은 성능을 보였다.

효율적인 모바일 지도 서비스를 위한 이동 객체의 공간 색인 기법 (Spatial Indexing Method of Moving Objects for Efficient Mobile Map Services)

  • 김진덕
    • 컴퓨터교육학회논문지
    • /
    • 제6권4호
    • /
    • pp.49-59
    • /
    • 2003
  • 자동차, 모바일 폰, PDA와 같은 이동 객체를 모바일 데이터베이스에 정확히 색인하기 위해서는 위치 정보를 계속적으로 변경해주어야 하며 또한 많은 시간이 소요된다. 이 논문에서는 효율적인 모바일 지도 서비스를 위한 이동 객체의 공간 색인 기법을 제안한다. 구체적으로 각 이동 객체의 위치 변경 보고 즉시 병경하는 방법과 일정 주기마다 전체 객체에 대해 재색인하는 방법의 장단점을 분석하고, 데이터베이스 변경 횟수의 최소화를 위해 이동체의 특성을 감안한 새로운 버켓 분할 방법을 제안한다. 이동 객체 환경에서의 실험 결과는 제안한 방법론이 모바일 지도 서비스에 적합함을 보여준다.

  • PDF