• Title/Summary/Keyword: spatial representation

Search Result 403, Processing Time 0.026 seconds

Hyperspectral Image Classification via Joint Sparse representation of Multi-layer Superpixles

  • Sima, Haifeng;Mi, Aizhong;Han, Xue;Du, Shouheng;Wang, Zhiheng;Wang, Jianfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.5015-5038
    • /
    • 2018
  • In this paper, a novel spectral-spatial joint sparse representation algorithm for hyperspectral image classification is proposed based on multi-layer superpixels in various scales. Superpixels of various scales can provide complete yet redundant correlated information of the class attribute for test pixels. Therefore, we design a joint sparse model for a test pixel by sampling similar pixels from its corresponding superpixels combinations. Firstly, multi-layer superpixels are extracted on the false color image of the HSI data by principal components analysis model. Secondly, a group of discriminative sampling pixels are exploited as reconstruction matrix of test pixel which can be jointly represented by the structured dictionary and recovered sparse coefficients. Thirdly, the orthogonal matching pursuit strategy is employed for estimating sparse vector for the test pixel. In each iteration, the approximation can be computed from the dictionary and corresponding sparse vector. Finally, the class label of test pixel can be directly determined with minimum reconstruction error between the reconstruction matrix and its approximation. The advantages of this algorithm lie in the development of complete neighborhood and homogeneous pixels to share a common sparsity pattern, and it is able to achieve more flexible joint sparse coding of spectral-spatial information. Experimental results on three real hyperspectral datasets show that the proposed joint sparse model can achieve better performance than a series of excellent sparse classification methods and superpixels-based classification methods.

GIS-based Data-driven Geological Data Integration using Fuzzy Logic: Theory and Application (퍼지 이론을 이용한 GIS기반 자료유도형 지질자료 통합의 이론과 응용)

  • ;;Chang-Jo F. Chung
    • Economic and Environmental Geology
    • /
    • v.36 no.3
    • /
    • pp.243-255
    • /
    • 2003
  • The mathematical models for GIS-based spatial data integration have been developed for geological applications such as mineral potential mapping or landslide susceptibility analysis. Among various models, the effectiveness of fuzzy logic based integration of multiple sets of geological data is investigated and discussed. Unlike a traditional target-driven fuzzy integration approach, we propose a data-driven approach that is derived from statistical relationships between the integration target and related spatial geological data. The proposed approach consists of four analytical steps; data representation, fuzzy combination, defuzzification and validation. For data representation, the fuzzy membership functions based on the likelihood ratio functions are proposed. To integrate them, the fuzzy inference network is designed that can combine a variety of different fuzzy operators. Defuzzification is carried out to effectively visualize the relative possibility levels from the integrated results. Finally, a validation approach based on the spatial partitioning of integration targets is proposed to quantitatively compare various fuzzy integration maps and obtain a meaningful interpretation with respect to future events. The effectiveness and some suggestions of the schemes proposed here are illustrated by describing a case study for landslide susceptibility analysis. The case study demonstrates that the proposed schemes can effectively identify areas that are susceptible to landslides and ${\gamma}$ operator shows the better prediction power than the results using max and min operators from the validation procedure.

Conversional Aspect of The Theme Space Based on Visual Image Content:A Focus on Representation through Adaptation (영상콘텐츠에서 테마공간으로의 전환 양상:각색을 통한 재현을 중심으로)

  • Shin, Dong-Hee;Kim, Hee-Kyung
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.4
    • /
    • pp.186-197
    • /
    • 2012
  • The purpose of the thesis is to answer the question on how the visual image content, being the original content, should be adapted to and represented as a spatial content. The thesis focuses on adaptation as the key in the conversion process of visual image content to a themed space. There are many published studies dealing with storytelling, adaptation from books to movies and TV shows, or from movies to games and vice versa. On the contrary, when it comes to adaptation from visual image content to spatial content, noticeably few studies were done on the method, and fewer studies view adaptation as the prior step of storytelling. This study first defines adaptation, and then applies the methods of Gianetty and Dudley which is further incorporated into the conversion of visual image content into a themed space. It then turns the attention to the characteristics of themed spaces. A case study highlights that a themed space is a spatial representation of the story, image and action in the visual image content, and analyze the type of adaptation made. The study results draws two conclusions; adaptation must be carried out prior to the storytelling of the spatial content; and opposed to a third-person view of the visual image content, the main factor in a themed space is first-hand experience. Thus, the thesis suggests that conversion from visual image content to themed spaces are not merely imitative but is a full range of recreation of a new content. It is expected that more detailed analyses on the particulars will lead to feasible outcome on implementing various methods of adaptation and bring about effective conversions between the visual image contents and themed spaces.

Multi-channel Audio Service in a Terrestrial-DMB System Using VSLI-Based Spatial Audio Coding

  • Seo, Jeong-Il;Moon, Han-Gil;Beack, Seung-Kwon;Kang, Kyeong-Ok;Hong, Jae-Keun
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.635-638
    • /
    • 2005
  • Spatial audio coding (SAC) is an extremely high compact representation of encoded multi-channel audio material. This paper suggests a multi-channel audio service in the terrestrial digital multimedia broadcasting (T-DMB) system using a novel SAC tool, which is called a virtual source location information (VSLI)-based SAC tool. Intensive experiments are presented to evaluate the validity of the proposed VSLI-based SAC tool, and prototypical systems are also presented to demonstrate the reliability of the proposed multi-channel T-DMB system in real applications.

  • PDF

Do Simple Objects Facilitate Infants' Formation of a Spatial Category?

  • Park, You-Jeong;Casasola, Marianella;Kim, Jin-Wook
    • Child Studies in Asia-Pacific Contexts
    • /
    • v.2 no.2
    • /
    • pp.77-90
    • /
    • 2012
  • The present study investigated infants' ability to form a category of a support relation (i.e., "on") when the objects depicting the relation were perceptually simple versus more complex. Twenty Korean infants of 14 months were habituated to dynamic support events with objects that were either simple or more complex in appearance. They were then tested with events that differed from the habituation events in the specific objects, spatial relation, or both. Infants formed a support category whether familiarized to simple or complex objects, looking significantly longer at test events with a novel than familiar relation. The results indicate that at 14 months of age, object features do not impact infants' ability to form a categorical representation of support.

SPATIAL EXPLANATIONS OF SPEECH PERCEPTION: A STUDY OF FRICATIVES

  • Choo, Won;Mark Huckvale
    • Proceedings of the KSPS conference
    • /
    • 1996.10a
    • /
    • pp.399-403
    • /
    • 1996
  • This paper addresses issues of perceptual constancy in speech perception through the use of a spatial metaphor for speech sound identity as opposed to a more conventional characterisation with multiple interacting acoustic cues. This spatial representation leads to a correlation between phonetic, acoustic and auditory analyses of speech sounds which can serve as the basis for a model of speech perception based on the general auditory characteristics of sounds. The correlations between the phonetic, perceptual and auditory spaces of the set of English voiceless fricatives /f $\theta$ s $\int$ h / are investigated. The results show that the perception of fricative segments may be explained in terms of 2-dimensional auditory space in which each segment occupies a region. The dimensions of the space were found to be the frequency of the main spectral peak and the 'peakiness' of spectra. These results support the view that perception of a segment is based on its occupancy of a multi-dimensional parameter space. In this way, final perceptual decisions on segments can be postponed until higher level constraints can also be met.

  • PDF

Representation and inference of topological relations between objects for spatial situation awareness (상황인식을 위한 물체간 토폴로지관계의 표현 및 추론)

  • Minami, Takashi;Ryu, Jae-Kwan;Chong, Nak-Young
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.1
    • /
    • pp.42-51
    • /
    • 2008
  • Robots need to understand as much as possible about their environmental situation and react appropriately to any event that provokes changes in their behavior. In this paper, we pay attention to topological relations between spatial objects and propose a model of robotic cognition that represents and infers temporal relations. Specifically, the proposed model extracts specified features of the cooccurrence matrix represents from disparity images of the stereo vision system. More importantly, a habituation model is used to infer intrinsic spatial relations between objects. A preliminary experimental investigation is carried out to verify the validity of the proposed method under real test condition.

  • PDF

Assessment of Improving SWAT Weather Input Data using Basic Spatial Interpolation Method

  • Felix, Micah Lourdes;Choi, Mikyoung;Zhang, Ning;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.368-368
    • /
    • 2022
  • The Soil and Water Assessment Tool (SWAT) has been widely used to simulate the long-term hydrological conditions of a catchment. Two output variables, outflow and sediment yield have been widely investigated in the field of water resources management, especially in determining the conditions of ungauged subbasins. The presence of missing data in weather input data can cause poor representation of the climate conditions in a catchment especially for large or mountainous catchments. Therefore, in this study, a custom module was developed and evaluated to determine the efficiency of utilizing basic spatial interpolation methods in the estimation of weather input data. The module has been written in Python language and can be considered as a pre-processing module prior to using the SWAT model. The results of this study suggests that the utilization of the proposed pre-processing module can improve the simulation results for both outflow and sediment yield in a catchment, even in the presence of missing data.

  • PDF

Development of MDA-based Subsurface Spatial Ontology Model for Semantic Sharing (시멘틱 공유를 위한 MDA기반 지하공간정보 온톨로지 모델 개발)

  • Lee, Sang-Hoon;Chang, Pyoung-Wuck
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.121-129
    • /
    • 2009
  • Today, it is difficult to re-use and share spatial information, because of the explosive growth of heterogeneous information and specific characters of spatial information accumulated by diverse local agency. A spatial analysis of subsurface spatial informa-tion, one of the National Spatial Data Infrastructure, needs related spatial information such as, topographical map, geologic map, underground facility map, etc. However, current methods using standard format or spatial datawarehouse cannot consider a se-mantic hetergenity. In this paper, the layered ontology model which consists of generic concept, measuremnt scale, spatial model, and subsurface spatial information has developed. Also, the current ontology building method pertained to human experts is a expensive and time-consuming process. We have developed the MDA-based metamodel(UML Profile) of ontology that can be a easy under-standing and flexiblity of environment change. The semantic quality of devleoped ontology model has evaluated by reasoning engine, Pellet. We expect to improve a semantic sharing, and strengthen capacities for developing GIS experts system using knowledge representation ability of ontology.

  • PDF

Drawing and Writing as Methods to Assist Students in Connecting and Integrating External Representations in Learning the Particulate Nature of Matter with Multiple Representations (물질의 입자적 성질에 대한 다중 표상 학습에서 외적 표상들 간의 연계와 통합을 촉진시키는 방안으로서의 그리기와 쓰기)

  • Kang, Hun-Sik;Kim, Bo-Kyung;Noh, Tae-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.25 no.4
    • /
    • pp.533-540
    • /
    • 2005
  • This study investigated the effects of drawing and writing as methods to assist students in connecting and integrating multiple external representations provided in learning the particulate nature of matter. Seventh graders (N=224) at a coed middle school were assigned to a control group, a drawing group, and a writing group. The students were taught about "Boyle's Law" and "Charles's Law" for two class periods. Students observed macroscopic phenomena through experiments. After this observation, students in the control group learned the topic with both external visual and verbal representations simultaneously. Students in the drawing group drew their mental model from the external verbal representation provided, and then compared their drawing with external visual representation. Students in the writing group wrote their mental model from the external visual representation provided, and then compared their writing to the external verbal representation. The two-way ANCOVA results revealed that the scores of a conception test for the writing group were significantly higher than those for the control group. While the drawing group performed better than the control group, the difference is relatively smaller. There were no significant interactions between the instruction and spatial visualization ability in the scores of the conception test. Most students perceived the writing or drawing activities helpful in understanding the concepts, and a few students responded that the writing or drawing activity was interesting. Educational implications were discussed.