• Title/Summary/Keyword: spatial regression models

Search Result 165, Processing Time 0.022 seconds

A study using spatial regression models on the determinants of the welfare expenditure in the local governments in Korea (공간회귀분석을 통한 지방자치단체 복지지출의 영향요인에 관한 연구)

  • Park, Gyu-Beom;Ham, Young-Jin
    • Journal of Digital Convergence
    • /
    • v.16 no.10
    • /
    • pp.89-99
    • /
    • 2018
  • The purpose of this study is to analyse the determinants of the change in the welfare expenditure of local governments in 2015. This study analyzed the spatial correlation of welfare expenditure among neighboring local governments and determined the factors affecting the welfare expenditures. According to the results of the study, spatial correlation of welfare expenditure among local governments appears. Determinants, such as socio-economic factors, administrative factors, public financial factors are affecting the amount of the welfare expenditures, but local political factors, and local tax, last year's budgets are not correlated with the amount of local welfare expenditures. In this study, it is significant to found out that the spatial correlation of welfare expenditure among the local governments and to examine the determinants. If possible, it is necessary to analyze the time-series analysis using the multi-year welfare expenditure data, expecially self-welfare expenditures.

CROSS SECTIONAL ANALYSIS OF RESIDENTIAL WATER CONSUMPTION IN THE CITY OF RIYADH

  • Taher, Saud;Alsaati, Adnan
    • Water Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.269-278
    • /
    • 2002
  • A cross sectional analysis for residential water demand was conducted to help understand and explain the spatial and temporal variations in per capita water use in the rapidly growing city of Riyadh, Saudi Arabia. The analysis was based on data previously collected from May 1983 to June 1984. 195 randomly selected households were distributed to three groups according to house condition, household income level, and social and cultural factors. The generated models using stepwise multiple regression indicated that plot size and number of males, females and children are the most significant independent variables. Although, coefficients of determination achieved for most of the developed models were low (0.2-0.5), the independent variables could still explain a part of the variations fur such a complex social and cultural structure.

  • PDF

Spatial Hedonic Modeling using Geographically Weighted LASSO Model (GWL을 적용한 공간 헤도닉 모델링)

  • Jin, Chanwoo;Lee, Gunhak
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.6
    • /
    • pp.917-934
    • /
    • 2014
  • Geographically weighted regression(GWR) model has been widely used to estimate spatially heterogeneous real estate prices. The GWR model, however, has some limitations of the selection of different price determinants over space and the restricted number of observations for local estimation. Alternatively, the geographically weighted LASSO(GWL) model has been recently introduced and received a growing interest. In this paper, we attempt to explore various local price determinants for the real estate by utilizing the GWL and its applicability to forecasting the real estate price. To do this, we developed the three hedonic models of OLS, GWR, and GWL focusing on the sales price of apartments in Seoul and compared those models in terms of model fit, prediction, and multicollinearity. As a result, local models appeared to be better than the global OLS on the whole, and in particular, the GWL appeared to be more explanatory and predictable than other models. Moreover, the GWL enabled to provide spatially different sets of price determinants which no multicollinearity exists. The GWL helps select the significant sets of independent variables from a high dimensional dataset, and hence will be a useful technique for large and complex spatial big data.

  • PDF

A Study on the Influence of Commercial Facility Diversity on the Formation of Consumption Centre: Application of Spatial Regression Models (상업시설의 다양성이 소비중심지 형성에 미치는 영향에 관한 연구: 공간회귀모형의 적용)

  • Sul-Hee Kim;Heung-Soon Kim
    • Land and Housing Review
    • /
    • v.15 no.1
    • /
    • pp.57-75
    • /
    • 2024
  • To create dynamic and bustling urban environments, a diverse array of commercial facilities is indispensable. These facilities are recognised as pivotal in attracting and accommodating a larger floating population, thereby suggesting that a greater diversity of commercial establishments fosters heightened consumer expenditure. With this premise, our study endeavours to explore the influence of commercial facility diversity on the Consumer Centre Index. Focused on the temporal context of 2021 and the spatial context of Seoul, our analysis utilizes the Consumer Centre Index, derived from Kernel Density analysis, as the dependent variable. Independent variables encompass factors reflecting commercial attributes and urban characteristics. Employing spatial regression analysis at the administrative district level, we discern that the clustering of similar industries exerts a more pronounced positive effect on consumer activation compared to the clustering of disparate industries. Additionally, the findings underscore the importance of concentrating industries that bolster consumer activation. Anticipated outcomes of this study include insights beneficial for optimizing commercial facility location policies within the consumer market.

GIS and Geographically Weighted Regression in the Survey Research of Small Areas (지역 단위 조사연구와 공간정보의 활용 : 지리정보시스템과 지리적 가중 회귀분석을 중심으로)

  • Jo, Dong-Gi
    • Survey Research
    • /
    • v.10 no.3
    • /
    • pp.1-19
    • /
    • 2009
  • This study investigates the utilities of spatial analysis in the context of survey research using Geographical Information System(GIS) and Geographically Weighted Regression (GWR) which take account of spatial heterogeneity. Many social phenomena involve spatial dimension, and with the development of GIS, GPS receiver, and online location-based services, spatial information can be collected and utilized more easily, and thus application of spatial analysis in the survey research is getting easier. The traditional OLS regression models which assume independence of observations and homoscedasticity of errors cannot handle spatial dependence problem. GWR is a spatial analysis technique which utilizes spatial information as well as attribute information, and estimated using geographically weighted function under the assumption that spatially close cases are more related than distant cases. Residential survey data from a Primary Autonomous District are used to estimate a model of public service satisfaction. The findings show that GWR handles the problem of spatial auto-correlation and increases goodness-of-fit of model. Visualization of spatial variance of effects of the independent variables using GIS allows us to investigate effects and relationships of those variables more closely and extensively. Furthermore, GIS and GWR analyses provide us a more effective way of identifying locations where the effect of variable is exceptionally low or high, and thus finding policy implications for social development.

  • PDF

Statistical estimation of crop yields for the Midwestern United States using satellite images, climate datasets, and soil property maps

  • Kim, Nari;Cho, Jaeil;Hong, Sungwook;Ha, Kyung-Ja;Shibasaki, Ryosuke;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.4
    • /
    • pp.383-401
    • /
    • 2016
  • In this paper, we described the statistical modeling of crop yields using satellite images, climatic datasets, soil property maps, and fertilizer data for the Midwestern United States during 2001-2012. Satellite images were obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS), and climatic datasets were provided by the Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group. Soil property maps were derived from the Harmonized World Soil Database (HWSD). Our multivariate regression models produced quite good prediction accuracies, with differences of approximately 8-15% from the governmental statistics of corn and soybean yields. The unfavorable conditions of climate and vegetation in 2012 could have resulted in a decrease in yields according to the regression models, but the actual yields were greater than predicted. It can be interpreted that factors other than climate, vegetation, soil, and fertilizer may be involved in the negative biases. Also, we found that soybean yield was more affected by minimum temperature conditions while corn yield was more associated with photosynthetic activities. These two crops can have different potential impacts regarding climate change, and it is important to quantify the degree of the crop sensitivities to climatic variations to help adaptation by humans. Considering the yield decreases during the drought event, we can assume that climatic effect may be stronger than human adaptive capacity. Thus, further studies are demanded particularly by enhancing the data regarding human activities such as tillage, fertilization, irrigation, and comprehensive agricultural technologies.

Accuracy Evaluation of Machine Learning Model for Concrete Aging Prediction due to Thermal Effect and Carbonation (콘크리트 탄산화 및 열효과에 의한 경년열화 예측을 위한 기계학습 모델의 정확성 검토)

  • Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.4
    • /
    • pp.81-88
    • /
    • 2023
  • Numerous factors contribute to the deterioration of reinforced concrete structures. Elevated temperatures significantly alter the composition of the concrete ingredients, consequently diminishing the concrete's strength properties. With the escalation of global CO2 levels, the carbonation of concrete structures has emerged as a critical challenge, substantially affecting concrete durability research. Assessing and predicting concrete degradation due to thermal effects and carbonation are crucial yet intricate tasks. To address this, multiple prediction models for concrete carbonation and compressive strength under thermal impact have been developed. This study employs seven machine learning algorithms-specifically, multiple linear regression, decision trees, random forest, support vector machines, k-nearest neighbors, artificial neural networks, and extreme gradient boosting algorithms-to formulate predictive models for concrete carbonation and thermal impact. Two distinct datasets, derived from reported experimental studies, were utilized for training these predictive models. Performance evaluation relied on metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analytical outcomes demonstrate that neural networks and extreme gradient boosting algorithms outshine the remaining five machine learning approaches, showcasing outstanding predictive performance for concrete carbonation and thermal effect modeling.

Monitoring of Lake Water Quality Using LANDSAT TM Imagery Data (LANDSAT TM 영상자료를 이용한 호수 수질 관측)

  • Kim, Tae-Geun;Kim, Kwang-Eun;Cho, Gi-Sung;Kim, Hwan-Gi
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.2 s.8
    • /
    • pp.23-33
    • /
    • 1996
  • The conventional monitoring of water quality constrained by time and equipment produce neither complete nor synoptic geographic coverage of pollutant distribution, transport, and water quality. To circumvent these limitations in temporal and spatial measurements, the use of remote sensing is increasingly being involved in the lacustrine environmental research. Consequently, satellite remote sensing, with its synoptic coverage, is used to obtain the eutrophication-related water quality parameters in Daecheong reservoir in this study. The approach involved acquisition of water quality samples from boats of 15 sites on 20 June 1995 and 30 sites on 18 March 1996, simultaneous with Landsat-5 satellite overpass. Regression models have been developed between the water quality parameters and Landsat Thematic Mapper(TM) digital data. The best regression model was determined based on the correlation coefficient which was higher than 0.6. As a result, satellite remote sensing can provide meaningful information on water quality parameters. The regression models developed in this study show good relationship for transparency, turbidity, SS, and chlorophyll, but not for TN and TP because their spectral characteristics are not well defined.

  • PDF

An Efficiency Assessment for Reflectance Normalization of RapidEye Employing BRD Components of Wide-Swath satellite

  • Kim, Sang-Il;Han, Kyung-Soo;Yeom, Jong-Min
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.303-314
    • /
    • 2011
  • Surface albedo is an important parameter of the surface energy budget, and its accurate quantification is of major interest to the global climate modeling community. Therefore, in this paper, we consider the direct solution of kernel based bidirectional reflectance distribution function (BRDF) models for retrieval of normalized reflectance of high resolution satellite. The BRD effects can be seen in satellite data having a wide swath such as SPOT/VGT (VEGETATION) have sufficient angular sampling, but high resolution satellites are impossible to obtain sufficient angular sampling over a pixel during short period because of their narrow swath scanning when applying semi-empirical model. This gives a difficulty to run BRDF model inferring the reflectance normalization of high resolution satellites. The principal purpose of the study is to estimate normalized reflectance of high resolution satellite (RapidEye) through BRDF components from SPOT/VGT. We use semi-empirical BRDF model to estimated BRDF components from SPOT/VGT and reflectance normalization of RapidEye. This study used SPOT/VGT satellite data acquired in the S1 (daily) data, and within this study is the multispectral sensor RapidEye. Isotropic value such as the normalized reflectance was closely related to the BRDF parameters and the kernels. Also, we show scatter plot of the SPOT/VGT and RapidEye isotropic value relationship. The linear relationship between the two linear regression analysis is performed by using the parameters of SPOTNGT like as isotropic value, geometric value and volumetric scattering value, and the kernel values of RapidEye like as geometric and volumetric scattering kernel Because BRDF parameters are difficult to directly calculate from high resolution satellites, we use to BRDF parameter of SPOT/VGT. Also, we make a decision of weighting for geometric value, volumetric scattering value and error through regression models. As a result, the weighting through linear regression analysis produced good agreement. For all sites, the SPOT/VGT isotropic and RapidEye isotropic values had the high correlation (RMSE, bias), and generally are very consistent.

Spatial and Temporal Variability of Water Quality in Korean Dam Reservoirs

  • Lim, Go-Woon;Lee, Sang-Jae;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.452-464
    • /
    • 2009
  • The objectives of this study were to evaluate spatial and temporal variability of water quality in 10 reservoirs and identify the key nutrients (N, P) influencing chlorophyll-a (CHL) along with analysis of empirical models and zonal patterns of total phosphorus (TP) and CHL. We analyzed total nitrogen (TN), TP, CHL, water clarity (Secchi depth, SD), and evaluated potential limiting nutrient using ambient N:P ratios and previous criteria of ambient nutrients. Water clarity and CHL varied largely depending on the seasonal monsoon and type of reservoir, but trophic state was diagnosed as eutrophy, base on mean CHL in most reservoirs. The peak of TP did not match the contents of CHL due to rapid flushing during the high run-off period. In the reservoir of DR, regression coefficient in the $P_r$ was 0.510 but was 0.159 in the $M_o$, while the TP-CHL relation in the YR increased during the monsoon compared to the premonsoon. The regression coefficient in the $P_r$ was not statistically significant but the value of $M_o$ was 0.250. TP showed similar longitudinal zonal gradients among the reservoirs of DR, YR and JR. Empirical models of TP-CHL, based on overall data, showed that CHL was determined by phosphorus($R^2=0.244$, p=0.0019). Regression analysis of CHL-SD showed a stronger linear fit ($R^2=0.638$, p<0.001) than the TP-CHL model.