• Title/Summary/Keyword: spatial neighbor

Search Result 171, Processing Time 0.032 seconds

Development of Prediction Model of Chloride Diffusion Coefficient using Machine Learning (기계학습을 이용한 염화물 확산계수 예측모델 개발)

  • Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.3
    • /
    • pp.87-94
    • /
    • 2023
  • Chloride is one of the most common threats to reinforced concrete (RC) durability. Alkaline environment of concrete makes a passive layer on the surface of reinforcement bars that prevents the bar from corrosion. However, when the chloride concentration amount at the reinforcement bar reaches a certain level, deterioration of the passive protection layer occurs, causing corrosion and ultimately reducing the structure's safety and durability. Therefore, understanding the chloride diffusion and its prediction are important to evaluate the safety and durability of RC structure. In this study, the chloride diffusion coefficient is predicted by machine learning techniques. Various machine learning techniques such as multiple linear regression, decision tree, random forest, support vector machine, artificial neural networks, extreme gradient boosting annd k-nearest neighbor were used and accuracy of there models were compared. In order to evaluate the accuracy, root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used as prediction performance indices. The k-fold cross-validation procedure was used to estimate the performance of machine learning models when making predictions on data not used during training. Grid search was applied to hyperparameter optimization. It has been shown from numerical simulation that ensemble learning methods such as random forest and extreme gradient boosting successfully predicted the chloride diffusion coefficient and artificial neural networks also provided accurate result.

A Parallel Processing of Finding Neighbor Agents in Flocking Behaviors Using GPU (GPU를 이용한 무리 짓기에서 이웃 에이전트 찾기의 병렬 처리)

  • Lee, Jae-Moon
    • Journal of Korea Game Society
    • /
    • v.10 no.5
    • /
    • pp.95-102
    • /
    • 2010
  • This paper proposes a parallel algorithm of the flocking behaviors using GPU. To do this, we used CUDA as the parallel processing architecture of GPU and then analyzed its characteristics and constraints. Based on them, the paper improved the performance by parallelizing to find the neighbors for an agent which requires the largest cost in the flocking behaviors. We implemented the proposed algorithm on GTX 285 GPU and compared experimentally its performance with the original spatial partitioning method. The results of the comparison showed that the proposed algorithm outperformed the original method up to 9 times with respect to the execution time.

Combining R-trees and Signature Files for Handling k-Nearest Neighbor Queries with Non-spatial Predicates (비공간 검색 조건이 포함된 k-최근접 질의 처리를 위한 R-트리와 시그니쳐 파일의 결합)

  • Park, Dong-Ju;Kim, Hyeong-Ju
    • Journal of KIISE:Databases
    • /
    • v.27 no.4
    • /
    • pp.651-662
    • /
    • 2000
  • 멀티미디어 데이터베이스에서 k-최근접 질의는 가장 일반적이며, 비공간 검색 조건이 포함된 경우가 많다. 현재까지 이러한 질의를 위한 여러 기법 중에서 Hjaltason과 Samet이 제안한 점증적 최근접 알고리즘에 가장 유용하다고 알려져 있다. 질의 처리를 위해 상위 연산자가 k보다 많은 객체를 요구할 때, 이 알고리즘은 처음부터 질의를 재실행하지 않고 다음 객체를 전달할 수 있기 때문이다. 그런데, 이 알고리즘에서 사용하는 R-트리는 결국에는 비공간 검색조건을 만족시키지 않을 투플 후보들을 부분적으로 제거할 수가 없기 때문에 비효율적이다. 본 논문에서 우리는 이 알고리즘을 보완한 RS-트리 기반 점증적 최근접 알고리즘을 제안한다. RS-트리는 R-트리와, 그 보조 트리로서 계층적 시스니쳐 파일을 기반으로 하는 S-트리로 구성된다. S-트리는 R-트리를 탐색하는 과정에서 많은 불필요한 투플을 제거하는 역할을 수행한다. 본 논문에서는 실험을 통해 RS-트리가 Hjaltason과 Samet의 알고리즘의 성능을 향상시킬 수 있음을 보인다.

  • PDF

Interpolation Algorithm Comparison for Contour of Magnified Image (확대 영상의 윤각선 보간 알고리즘 비교)

  • 이용중;김기대;조순조
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.381-386
    • /
    • 2001
  • When a input image is extensively magnified on the computer system, it is almost impossible to replicate the original shape because of mismatched coordinates system. In order to resolve the problem, the shape of the magnified image has been reconfigured using the bilinear interpolation method, low pass special filtering interpolation method and B-spline interpolation method, Ferguson curve interpolation method based on the CAD/CAM curve interpolation algorithm. The computer simulation main result was that. Nearest neighbor interpolation method is simple in making the interpolation program but it is not capable to distinguish the original shape. Bilinear interpolation method has the merit to make the magnified shape smooth and soft but calculation time is longer than the other method. Low pass spatial filtering method and B-spline interpolation method has an effect to immerge the intense of the magnified shape but it is also difficult to distinguish the original shape. Ferguson curve interpolation method has sharping shape than B-spline interpolation method.

  • PDF

mkNN Query Processing Method based on $R^m$-tree for Spatial Objects with m-types (m-유형 공간객체를 위한 $R^m$-tree기반의 mk-최근접질의 처리기법)

  • Jang, Dong-Jue;An, Soo-Yeon;Jung, Sung-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.45-48
    • /
    • 2011
  • 본 논문에서는 다양한 타입의 위치기반 데이터들을 하나의 R-tree로 통합합 $R^m$-tree의 구조와 이 $R^m$-tree를 이용하여 질의 포인트로부터 각 타입에서 k개의 가까운 위치기반 데이터를 찾는 mkNN(multi-type k nearest neighbor) 질의 처리기법을 제안하였다. 특히, 다양한 타입의 위치기반 데이터들을 각 타입별로 독립된 R-tree로 유지하지 않고, 하나의 $R^m$-tree로 통합하여 관리함으로써 mkNN 질의 처리시 같은 레벨의 공간의 반복탐색을 줄일 수 있도록 고안하였다. 그리고 각 타입 t에 대한 위치데이터를 관리하는 부가적인 타입정보 자료구조로서 위치정보를 담은 TMBR, 데이터 개수정보를 담은 $I_t$-entry를 새로이 고안하여 mkNN질의 처리시 효율적인 휠터링(filtering)과 검색과정이 이루어지도록 하였다.

Adopting and Implementation of Decision Tree Classification Method for Image Interpolation (이미지 보간을 위한 의사결정나무 분류 기법의 적용 및 구현)

  • Kim, Donghyung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.55-65
    • /
    • 2020
  • With the development of display hardware, image interpolation techniques have been used in various fields such as image zooming and medical imaging. Traditional image interpolation methods, such as bi-linear interpolation, bi-cubic interpolation and edge direction-based interpolation, perform interpolation in the spatial domain. Recently, interpolation techniques in the discrete cosine transform or wavelet domain are also proposed. Using these various existing interpolation methods and machine learning, we propose decision tree classification-based image interpolation methods. In other words, this paper is about the method of adaptively applying various existing interpolation methods, not the interpolation method itself. To obtain the decision model, we used Weka's J48 library with the C4.5 decision tree algorithm. The proposed method first constructs attribute set and select classes that means interpolation methods for classification model. And after training, interpolation is performed using different interpolation methods according to attributes characteristics. Simulation results show that the proposed method yields reasonable performance.

A hardware architecture of connected speech recognition and FPGA implementation (연결 단어 음성인식을 위한 하드웨어 아키텍쳐 및 FPGA 구현)

  • Kim, Yong;Jeong, Hong
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.381-382
    • /
    • 2006
  • In this paper, we present an efficient architecture for connected speech recognition that can be efficiently implemented with FPGA. The architecture consists of newly derived two-level dynamic programming (TLDP) that use only bit addition and shift operations. The advantages of this architecture are the spatial efficiency to accommodate more words with limited space and the computational speed from avoiding propagation delays in multiplications. The architecture is highly regular, consisting of identical and simple processing elements with only nearest-neighbor communication, and external communication occurs with the end processing elements.

  • PDF

Evaluation of Raingauge Network Efficiency Considering Entropy Theory and Spatial Distribution (엔트로피 이론 및 공간분포를 고려한 강우관측망 평가)

  • Lee, Ji-Ho;Joo, Hong-Jun;Jun, Hwan-Don;Kim, Hung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.783-783
    • /
    • 2012
  • 본 연구에서는 낙동강 임하댐 유역을 대상으로 엔트로피 이론(혼합분포 적용)과 관측소의 공간적 분포를 동시에 고려하여 강우관측망을 평가하였다. 일반적으로 혼합분포를 이용하는 강우관측망 평가는 연속분포를 이용하는 경우 비해 강우의 시공간적 간헐성을 고려할 수 있다는 장점이 있다. 아울러 유역의 면적평균강우량을 산정시 강우관측소는 균등하게 설치된 경우가 가장 이상적이며, 이를 최근린 지수(Nearest neighbor index)를 이용하여 강우관측소 간에 공간적 분포를 등급화하였다. 최근린 지수는 임의의 점에 가장 가까운 인접 점들 간의 거리 특성을 이용하는 방법으로 점의 분포를 보다 지리적으로 파악할 수 있다. 본 연구에서는 엔트로피의 최대 정보전달량 및 강우관측소의 등급을 동시에 고려하기 위해 유클리디언 거리를 이용하여 2개의 목적함수를 통합하였으며, 이를 MOGA(Multi Objective Genetic Algorithm)를 이용하여 최적관측망을 선정하였다. 그 결과 MOGA를 이용하여 관측망을 평가한 경우 엔트로피 이론만을 적용했을 때보다 최적관측소가 보다 분산됨을 확인하였다.

  • PDF

Database of Navigational Environment Parameters (Water Depth, Sediment Type and Marine Managed Areas) to Support Ships in an Emergency

  • Kim, Tae-Ho;Yang, Chan-Su
    • Journal of Navigation and Port Research
    • /
    • v.43 no.5
    • /
    • pp.302-309
    • /
    • 2019
  • This study introduces the navigational environment database(DB) compiling water depth, sediment type and marine managed areas (MMAs) in coastal waters of South Korea. The water depth and sediment data were constructed by combining their sparse points of electronic navigation chart and survey data with high spatial resolution using the inverse distance weighting and natural neighbor interpolation method included in ArcGIS. The MMAs were integrated based on all shapefiles provided by several government agencies using ArcGIS because the areas should be used in an emergency case of ship. To test the validity of the constructed DB, we conducted a test application for grounding and anchoring zones using a ship accident case. The result revealed each area of possible grounding candidates and anchorages is calculated and displayed properly, excluding obstacle places.

A Block-Based Adaptive Data Hiding Approach Using Pixel Value Difference and LSB Substitution to Secure E-Governance Documents

  • Halder, Tanmoy;Karforma, Sunil;Mandal, Rupali
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.261-270
    • /
    • 2019
  • In order to protect secret digital documents against vulnerabilities while communicating, steganography algorithms are applied. It protects a digital file from unauthorized access by hiding the entire content. Pixel-value-difference being a method from spatial domain steganography utilizes the difference gap between neighbor pixels to fulfill the same. The proposed approach is a block-wise embedding process where blocks of variable size are chosen from the cover image, therefore, a stream of secret digital contents is hidden. Least significant bit (LSB) substitution method is applied as an adaptive mechanism and optimal pixel adjustment process (OPAP) is used to minimize the error rate. The proposed application succeeds to maintain good hiding capacity and better signal-to-noise ratio when compared against other existing methods. Any means of digital communication specially e-Governance applications could be highly benefited from this approach.