• Title/Summary/Keyword: spatial moment

Search Result 166, Processing Time 0.022 seconds

Analysis of Longitudinal Slot Array Antenna in Rectangular Waveguide using Spatial Network Method (SNM) (공간회로망법을 이용한 축방향 슬롯 배열 도파관 안테나 해석)

  • Lee, Hee-Bock;Choi, Sung-Youl;Park, Kyoung-Soo;Kim, Jin;Lim, Young-Hwan;Ko, Young-Ho
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.416-419
    • /
    • 2000
  • A narrow slot in the broad wall of a rectangular waveguide is analysed using a Spatial Network Method[1] which takes account of the waveguide wall thickness. In essence, SNM is used to solve arbitrary shape and materials constant, derived from maxwell's equations to find the tangential electric fields on the upper and lower surfaces of the slot. In this paper, applying to the offset and length[2] which yield a zero equivalent shunt susceptance, analysing single and 4 array slot antenna. The current of the transient analysis shows each the times. Analysed result of SNM is verified by the method of moment and HFSS.

  • PDF

Region of Interest Detection Based on Visual Attention and Threshold Segmentation in High Spatial Resolution Remote Sensing Images

  • Zhang, Libao;Li, Hao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1843-1859
    • /
    • 2013
  • The continuous increase of the spatial resolution of remote sensing images brings great challenge to image analysis and processing. Traditional prior knowledge-based region detection and target recognition algorithms for processing high resolution remote sensing images generally employ a global searching solution, which results in prohibitive computational complexity. In this paper, a more efficient region of interest (ROI) detection algorithm based on visual attention and threshold segmentation (VA-TS) is proposed, wherein a visual attention mechanism is used to eliminate image segmentation and feature detection to the entire image. The input image is subsampled to decrease the amount of data and the discrete moment transform (DMT) feature is extracted to provide a finer description of the edges. The feature maps are combined with weights according to the amount of the "strong points" and the "salient points". A threshold segmentation strategy is employed to obtain more accurate region of interest shape information with the very low computational complexity. Experimental statistics have shown that the proposed algorithm is computational efficient and provide more visually accurate detection results. The calculation time is only about 0.7% of the traditional Itti's model.

A Study on the y+ Effects on Turbulence Model of Unstructured Grid for CFD Analysis of Wind Turbine (풍력터빈 전산유체역학해석에서 비균일 그리드 무차원 연직거리의 난류모델에 대한 영향특성)

  • Lee, Kyoung-Soo;Ziaul, Huque;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.1
    • /
    • pp.75-84
    • /
    • 2015
  • This paper presents the dimensionless wall distance, y+ effect on SST turbulent model for wind turbine blade. The National Renewable Energy Laboratory (NREL) Phase VI wind turbine was used for the study, which the wind tunnel and structural test data has publicly available. The near wall treatment and turbulent characteristics have important role for proper CFD simulation. Most of the CFD development in this area is focused on advanced turbulence model closures including second moment closure models, and so called Low-Reynolds (low-Re) number and two-layer turbulence models. However, in many cases CFD aerodynamic predictions based on these standard models still show a large degree of uncertainty, which can be attributed to the use of the $\epsilon$-equation as the turbulence scale equation and the associated limitations of the near wall treatment. The present paper demonstrates the y+ definition effect on SST (Shear Stress Transport) turbulent model with advanced automatic near wall treatment model and Gamma theta transitional model for transition from lamina to turbulent flow using commercial ANSYS-CFX. In all cases the SST model shows to be superior, as it gives more accurate predictions and is less sensitive to grid variations.

A Multiresolution Wavelet Scattering Analysis of Microstrip Patch antennas (마이크로스트립 패치 안테나의 다중 분해능 웨이블릿 산란해석법)

  • 강병용;주세훈;빈영부;김형훈;김형동
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.5
    • /
    • pp.640-647
    • /
    • 1998
  • Microstrip patch antennas are analyzed by a multiresolution wavelet method. The spectral Green's dyad of the structure is obtained and its joint spatial-spectral domain representations are presented. Based on the joint spatial-spectral domain representation, we show that the spectral-domain wavelets are useful in the analysis of this problem. We obtain the matrix equations of the integral equations of this Green's dyad by using the method of moment(MoM), and efficiently solve the problem using the spectral domain wavelet transform concepts in conjuction with the conjugate gradient method. The results for a single-layered square patch are compared with those of conventional MoM and CG-FFT.

  • PDF

The Effect of the Variation of the Number of Bolts on the Rotational Stiffnesses of Double Angle Connections (볼트수의 변화가 더블앵글 접합부의 회전강성에 미치는 영향)

  • Yang, Jae-Geun;Kim, Ho-Keun;Kim, Ki-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.1 s.11
    • /
    • pp.69-75
    • /
    • 2004
  • In the construction of row-rise steel buildings, double angle connection can be considered as one of most effective connection types. Its connection flexibility depends mainly on several parameters such as angle thickness, bolt gage distance, and number of bolts. To establish the effect of the variation of the number of bolts on the moment-rotation relationship, three experimental tests have been conducted in this research. Based on the results of each experimental test, the rotational stiffness of each angle specimen can be calculated by performing regression analysis. Considering the results of regression analysis, we concluded that the more the number of bolts used in double angle connection, the higher the rotational stiffness as one can expected.

  • PDF

Evaluation on Flexural Performance of One-Way Hollow Slabs according to the Shear Reinforcement (전단보강에 따른 일방향 중공슬래브의 휨 성능 평가)

  • Yu, Yu-Jin;Seok, Keun-Young;Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.2
    • /
    • pp.79-86
    • /
    • 2014
  • The purpose of this study is intended to determine the validity of shear reinforcement by evaluating flexural performance in the hollow slab. The hollow slab is relatively light and second moment of inertia is large. Due to these characteristics, it can be used to slab system efficiently. Therefore the prediction of the structural behaviors is very important because of decrease of shear and flexural strength which is caused by hollow section of slab interior. In this study, the flexural test were performed to analyze the flexural capacity of the hollow slab w/ or w/o shear reinforcement. A total of six full scale specimens were tested. These specimens have three cases of reinforcing bar ratio, 0.009, 0.018 and 0.024. To verify the flexural behavior such as ultimate load, load-deflection and crack pattern, the flexural experiment were tested by using loading frame. Experimental results have shown that the flexural behavior are depend on the reinforcing bar ratio. Also the hollow slab with shear reinforcement have shown flexural behavior. Therefore, it is appropriate that the hollow slab is reinforced by shear reinforcement to improve the flexural performance of the hollow slab.

Analysis of the Static Characteristics of High-Rise Structures With Twisted Shape (비틀어진 형상(Twisted)을 가지는 고층 구조물의 역학적 특성 분석)

  • Lee, Da-Hye;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.93-100
    • /
    • 2020
  • In this study, structural characteristics were analyzed by combining gravity load and lateral loads such as seismic loads through static analysis of example structures, and the static characteristics of the twisted structure according to the plane rotation angle were also analyzed. Example structures were selected as regular structure, and twisted structures; 1.0, 2.0, and 3.0 degree angle of rotation per story, and static analysis was performed by the load combination case 1 and case 2. As a result the story drift ratio of the twisted-shaped structure also increased as the plane rotation angle per story increased. The eccentricity according to the load combination was the highest in the lower stories of all analysis models, and the eccentricity was found to be larger as the rotation angle decreased. The twisted-shaped structure was more responsible for the bending moment of the column than the regular structure, and the vertical member axial force of all analysis models was almost similar.

Seismic Response Analysis of Twisted Buildings with Three Planar Shapes (세 가지 평면 형상에 따른 비틀림 비정형 빌딩구조물의 지진응답 분석)

  • Lee, Da-Hye;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.23-30
    • /
    • 2021
  • In this paper, a twisted shape structure with an elevation form favorable to the resistance of vibration caused by wind loads is selected from among the forms of high-rise buildings. The analytical model is a square, triangular, and hexagonal plane with a plane rotation angle of one degree from 0 to 3 degrees per each story. As a result of the analysis, as the twist angle increased, story drift ratio is increased. Responses with different eccentricity rates were shown by analytical models. Therefore planar shapes designed symmetrically to the horizontal axis of X and Y are considered advantageous for eccentricity and torsion deformation. In the case of the bending moment of the column, the response was amplified in the column supporting the base floor, the roof floor, the floor in which the cross-section of the vertical member changes, and the floor having the same number of nodes as the base floor. Finally, the axial force response of the column is determined to be absolutely affected by the gravity load compared to the lateral load.

Dynamic Response Analysis of Twisted High-Rise Structures according to the Core Location Change (코어 위치 변화에 따른 비틀림 초고층 구조물의 동적응답분석)

  • Chae, Young-Won;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.1
    • /
    • pp.17-24
    • /
    • 2022
  • Currently, the construction trend of high-rise structures is changing from a cube-shaped box to a free-form. In the case of free-form structures, it is difficult to predict the behavior of the structure because it induces torsional deformation due to inclined columns and the eccentricity of the structure by the horizontal load. For this reason, it is essential to review the stability by considering the design variables at the design stage. In this paper, the position of the weak vertical member was analyzed by analyzing the behavior of the structure according to the change in the core position of the twisted high-rise structures. In the case of the shear wall, the shear force was found to be high in the order of proximity to the center of gravity of each floor of the structure. In the case of the column, the component force was generated by the axial force of the outermost beam, so the bending moment was concentrated on the inner column with no inclination.

Analysis of the Static Behavior of Tilted Structure with Dual-Core by Core Location (이중코어를 가진 경사진 형상 구조물의 코어 배치에 따른 역학적 거동 분석)

  • Kim, Min-Seok;Lee, Da-Hye;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.3
    • /
    • pp.71-78
    • /
    • 2023
  • Recently, Free-Form and Irregular Shape high-rise buildings are constructed by IT technology development. Tilted shaped high-rise building which is one of Irregular shape high-rise buildings can cause lateral displacement by gravity load and lateral load due to tilted elevation shape. Therefore, it is necessary to review the behavior and structural aspects of the Tilted shape high-rise building by gravity load. In this paper, the dynamic characteristics of a tilted structure with a dual-core were analyzed with the core location as a design variable, and response behavior, vulnerable members, and vulnerable layers to earthquake loads were analyzed. As a result of the analysis, as the location of the core moved in an tilted direction, the eccentric distance and eccentric load decreased, reducing the axial force of the vertical members. However, the location of the core had little effect on the response.