• Title/Summary/Keyword: spatial modulation

Search Result 248, Processing Time 0.025 seconds

Switching between Spatial Modulation and Quadrature Spatial Modulation

  • Kim, Sangchoon
    • International journal of advanced smart convergence
    • /
    • v.8 no.3
    • /
    • pp.61-68
    • /
    • 2019
  • Spatial modulation (SM) is the first proposed space modulation technique. By further utilizing the quadrature spatial dimension, quadrature spatial modulation (QSM) has been developed as an amendment to SM system to enhance the overall spectral efficiency. Both techniques are capable of entirely eliminating interchannel interference (ICI) at the receiver. In this paper, we propose a simple adaptive hybrid switching transmission scheme to obtain better system performance than SM and QSM systems under a fixed transmission date rate. The presented modulator selection criterion for switching between spatial modulator and quadrature spatial modulator is based on the larger received minimum distance of spatial modulator and quadrature spatial modulator to exploit the spatial channel freedom. It is shown through Monte Carlo simulations that the proposed hybrid SM and QSM switching system yields lower error performance than the conventional SM and QSM systems under the same fixed data rate and thus can provide signal to noise ratio (SNR) gain.

Antenna Selection Schemes in Quadrature Spatial Modulation Systems

  • Kim, Sangchoon
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.606-611
    • /
    • 2016
  • This paper presents antenna selection schemes for recently proposed quadrature spatial modulation (QSM) systems. The antenna selection strategy is based on Euclidean distance optimized antenna selection (EDAS). The symbol error rate (SER) performance of these schemes is compared with that of the corresponding algorithm associated with spatial modulation (SM) systems. It is shown through simulations that QSM systems using EDAS offer significant improvement in terms of SER performance over SM systems with EDAS. Their SER performance gains are seen to be about 2 dB-4 dB in $E_s/N_0$ values.

Novel Trellis-Coded Spatial Modulation over Generalized Rician Fading Channels

  • Zhang, Peng;Yuan, Dongfeng;Zhang, Haixia
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.900-910
    • /
    • 2012
  • In this paper, a novel trellis-coded spatial modulation (TCSM) design method is presented and analyzed. Inspired by the key idea of trellis-coded modulation (TCM), the detailed analysis is firstly provided on the unequal error protection performance of spatial modulation constellation. Subsequently, the Ungerboeck set partitioning rule is proposed and applied to develop a general method to design the novel TCSM schemes. Different from the conventional TCSM approaches, the novel one based on the Ungerboeck set partitioning rule has similar properties as the classic TCM, which has simple but effective code design criteria. Moreover, the novel designed schemes are robust and adaptive to the generalized Rician fading channels, which outperform the traditional TCSM ones. For examples, the novel 4-, 8-, and 16-state TCSM schemes are constructed by employing different transmit antennas and different modulation schemes in different channel conditions. Simulation results clearly demonstrate the advantages of the novel TCSM schemes over the conventional ones.

Complex Quadrature Spatial Modulation

  • Mohaisen, Manar;Lee, Saetbyeol
    • ETRI Journal
    • /
    • v.39 no.4
    • /
    • pp.514-524
    • /
    • 2017
  • In this paper, we propose a spatial modulation (SM) scheme referred to as complex quadrature SM (CQSM). In contrast to quadrature SM (QSM), CQSM transmits two complex signal constellation symbols on the real and quadrature spatial dimensions at each channel use, increasing the spectral efficiency. To achieve that, signal symbols transmitted at any given time instant are drawn from two different modulation sets. The first modulation set is any of the conventional QAM/PSK alphabets, while the second is a rotated version of it. The optimal rotation angle is obtained through simulations for several modulation schemes and analytically proven for the case of QPSK, where both results coincide. Simulation results showed that CQSM outperformed QSM and generalized SM by approximately 5 dB and 4.5 dB, respectively, for the same transmission rate. Its performance was similar to that of QSM; however, it achieved higher transmission rates. It was additionally shown numerically and analytically that CQSM outperformed QSM for a relatively large number of transmit antennas.

Analysis of Spatial Modulation MIMO Reception Performance for UHDTV Broadcasting (UHDTV 방송을 위한 공간 변조 다중 안테나 시스템 수신 성능 분석)

  • Park, Myung Chul;Han, Dong Seog
    • Journal of Broadcast Engineering
    • /
    • v.20 no.6
    • /
    • pp.837-847
    • /
    • 2015
  • In this paper, the reception performance of spatial modulation multiple-output multiple-input (MIMO) is analyzed for high speed terrestrial broadcasting. The MIMO scheme is required to reduce the inter symbol interference (ISI) and spatial correlation. The spatial modulation scheme solves the problem of ISI, but the spatial correlation degrades the reception performance of SM scheme. The space-time block coded spatial modulation (STBC-SM) is combined the SM system with space-time block code (STBC) for reducing the effects of the spatial correlation. However, the STBC-SM scheme degrades the spectral efficiency by transmitting same data in the two symbol period. The double space-time transmit diversity with spatial modulation (DSTTD-SM) scheme transmits the data with full antenna combination. To adapt these SM MIMO systems into the terrestrial broadcasting system, the reception performance is analyzed using computer simulation in SUI channel environments.

Generalized Distributed Multiple Turbo Coded Cooperative Differential Spatial Modulation

  • Jiangli Zeng;Sanya Liu;Hui Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.999-1021
    • /
    • 2023
  • Differential spatial modulation uses the antenna index to transmit information, which improves the spectral efficiency, and completely bypasses any channel side information in the recommended setting. A generalized distributed multiple turbo coded-cooperative differential spatial modulation based on distributed multiple turbo code is put forward and its performances in Rayleigh fading channels is analyzed. The generalized distributed multiple turbo coded-cooperative differential spatial modulation scheme is a coded-cooperation communication scheme, in which we proposed a new joint parallel iterative decoding method. Moreover, the code matched interleaver is considered to be the best choice for the generalized multiple turbo coded-cooperative differential spatial modulation schemes, which is the key factor of turbo code. Monte Carlo simulated results show that the proposed cooperative differential spatial modulation scheme is better than the corresponding non-cooperative scheme over Rayleigh fading channels in multiple input and output communication system under the same conditions. In addition, the simulation results show that the code matched interleaver scheme gets a better diversity gain as compared to the random interleaver.

Performance analysis of precoding-aided differential spatial modulation systems with transmit antenna selection

  • Kim, Sangchoon
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.117-124
    • /
    • 2022
  • In this paper, the performance of precoding-aided differential spatial modulation (PDSM) systems with optimal transmit antenna subset (TAS) selection is examined analytically. The average bit error rate (ABER) performance of the optimal TAS selection-based PDSM systems using a zero-forcing (ZF) precoder is evaluated using theoretical upper bound and Monte Carlo simulations. Simulation results validate the analysis and demonstrate a performance penalty < 2.6 dB compared with precoding-aided spatial modulation (PSM) with optimal TAS selection. The performance analysis reveals a transmit diversity gain of (NT-NR+1) for the ZF-based PDSM (ZF-PDSM) systems that employ TAS selection with NT transmit antennas, NS selected transmit antennas, and NR receive antennas. It is also shown that reducing the number of activated transmit antennas via optimal TAS selection in the ZF-PDSM systems degrades ABER performance. In addition, the impacts of channel estimation errors on the performance of the ZF-PDSM system with TAS selection are evaluated, and the performance of this system is compared with that of ZF-based PSM with TAS selection.

Spatial Complex Envelope of Acoustic Field : Its Definition and Characteristics (음장의 공간 복소 포락: 정의와 특성)

  • Park, Choon-Su;Kim, Yang-Hann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.8
    • /
    • pp.693-700
    • /
    • 2007
  • We can predict spatial acoustic pressure distribution on the plane of interest by using acoustic holography. However, the information embedded in the distribution plot is usually much more than what we need: for example, source locations and their overall propagation pattern. One possible candidate to solve the problem is complex envelope analysis. Complex envelope analysis extracts slowly-varying envelope signal from a band signal. We have attempted to extend this method to space domain so that we can have spatial information that we need. We have to modulate two dimensional data for obtaining spatial envelope. Although spatial modulation basically follows the same concept that is used in time domain, the algorithm for the spatial modulation turns out to be different from temporal modulation. We briefly describe temporal complex envelope analysis and extend it to spatial envelope of 2-D acoustic field by introducing geometric transformation. In the end, the results of applying the spatial envelope to the holography are envisaged and verified.

Subcarrier Intensity Modulation-Spatial Modulation for Optical Wireless Communications (광 무선통신을 위한 SIM-SM 변조)

  • Cheng, Yan;Hwang, Seung-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.12
    • /
    • pp.1086-1093
    • /
    • 2013
  • In this paper, we propose a novel modulation that combines the spatial modulation (SM) with the subcarrier intensity-modulation (SIM) for optical wireless communications. The performance of SIM-SM scheme is compared to a conventional SIM by computer simulation. For the spectral efficiency (SE) of 2bits/s/Hz, the performance gain about 2dB is achieved. As the SE increases to 3bit or 4bits/s/Hz, the Eb/N0 gain becomes about 5dB. It is shown the attenuation for the SIM is more serious than the SIM-SM according to increasing the number of the subcarriers.