• Title/Summary/Keyword: spatial light modulation

Search Result 45, Processing Time 0.028 seconds

Enhanced Spatial Modulation of Indoor Visible Light Communication

  • Shan, Ye;Li, Ming;Jin, Minglu
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • In this study, we consider visible light communication in an indoor line-of-sight environment. It has been proved that among the multiple input multiple output (MIMO) techniques, spatial modulation (SM) performs better than repetition coding (RC) and spatial multiplexing (SMP). On the basis of a combination of SM and pulse amplitude modulation (PAM), here, we propose an enhanced SM algorithm to improve the bit error rate. Traditional SM activates only one light-emitting diode (LED) at one time, and the proposed enhanced SM activates two LEDs at one time and reduces the intensity levels of PAM by half. Under the condition of a highly correlated channel, power imbalance is used to improve the algorithm performance. The comparison between the two schemes is implemented at the same signal-to-noise ratio. The simulation results illustrate that the enhanced SM outperforms the traditional SM in both highly correlated and lowly correlated channels. Furthermore, the proposed enhanced SM scheme can increase the transmission rate in most cases.

Dimmable Spatial Intensity Modulation for Visible-light Communication: Capacity Analysis and Practical Design

  • Kim, Byung Wook;Jung, Sung-Yoon
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.532-539
    • /
    • 2018
  • Multiple LED arrays can be utilized in visible-light communication (VLC) to improve communication efficiency, while maintaining smart illumination functionality through dimming control. This paper proposes a modulation scheme called "Spatial Intensity Modulation" (SIM), where the effective number of turned-on LEDs is employed for data modulation and dimming control in VLC systems. Unlike the conventional pulse-amplitude modulation (PAM), symbol intensity levels are not determined by the amplitude levels of a VLC signal from each LED, but by counting the number of turned-on LEDs, illuminating with a single amplitude level. Because the intensity of a SIM symbol and the target dimming level are determined solely in the spatial domain, the problems of conventional PAM-based VLC and related MIMO VLC schemes, such as unstable dimming control, non uniform illumination functionality, and burdens of channel prediction, can be solved. By varying the number and formation of turned-on LEDs around the target dimming level in time, the proposed SIM scheme guarantees homogeneous illumination over a target area. An analysis of the dimming capacity, which is the achievable communication rate under the target dimming level in VLC, is provided by deriving the turn-on probability to maximize the entropy of the SIM-based VLC system. In addition, a practical design of dimmable SIM scheme applying the multilevel inverse source coding (MISC) method is proposed. The simulation results under a range of parameters provide baseline data to verify the performance of the proposed dimmable SIM scheme and applications in real systems.

Liquid Crystal Spatial Light Phase Modulator and its Applications

  • Hara, Tsutomu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.939-942
    • /
    • 2002
  • The optically addressed and electrically addressed spatial phase only light modulators without pixelized structures have been developed. A sufficient phase modulation capability and a high diffraction efficiency of these devices are useful for practical applications.

  • PDF

Technology Trends of Complex Modulation Spatial Light Modulator (복소변조 공간 광 변조 기술 동향)

  • Nam, J.;Kim, H.E.;Park, M.;Kim, Y.H.;Hwang, C.S.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.4
    • /
    • pp.81-88
    • /
    • 2022
  • In this study, we investigate the trends and prospects of spatial light modulation (SLM) technology that enables full complex modulation as a next-generation SLM. Current SLM technology, which is used as a key element in holography, augmented reality (AR), XR, and realistic displays, has performance limits that modulate only amplitude or phase. Notably, SLM capable of full complex modulation does not produce diffraction noise, unlike DC and twin image, and thus has a high-efficiency performance. In the future, the application field of next-generation SLM, which can be full-complex modulated, is expected to cover a wide range of holography-AR and-XR devices, optical artificial intelligence, and 6G free space optics communications, which will greatly contribute to the development of a super-realistic metaverse platform and service.

A STUDY ON THE SPATIAL LIGHT MODULATOR WITH PISTON PLUS TILT MODE OPERATION USING SURFACE MICROMACHINING TECHNOLOGY (표면 미세 가공 기술을 이용한 상하운동 및 회전운동을 하는 광 변조기에 관한 연구)

  • Jeong, Seok-Hwan;Kim, Yong-Gwon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.140-148
    • /
    • 2000
  • In this paper, using surface micromachining technology with thick photoresist and aluminum, an SLM(Spatial Light Modulator), which is applied to the fields of adaptive optics and pattern recognition system, was fabricated and the electromechanical properties of the fabricated micro SLM are measured. In order to maximize fill-factor and remove mechanical coupling between micro SLM actuators, the micro SLM is composed of three aluminum layers so that spring structure and upper electrode are placed beneath the mirror plate, and $10\times10$ each mirror plate is individually actuated. Also, the micro SLM was designed to be able to modulate phase and amplitude of incoming light in order to have a continuity of phase modulation of incoming light. In the case of amplitude and phase modulation, maximum vertical displacement is 4$\mum$, and maximum angular displacement is $\pm4.6^{\corc}$ respectively. The height difference of the fabricated mirror plate was able to be reduced to 1100A with mirror plate planarization method using negative photoresist(AZ5214). The electromechanical properties of the fabricated micro SLM were measured with the optical measurement system using He-Ne laser and PSD(position sensitive device).

  • PDF

Implementation of Spatial Light Modulator(SLM) using a Commercial LCD Beam Projector

  • Ko, Jung-Hwan;Lee, Jae-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.9
    • /
    • pp.1-10
    • /
    • 2006
  • In this paper, a new high resolution XGA-SLM is implemented through modification of a commercial TFT-LCD beam projector and its optical modulation characteristics as a spatial light modulator(SLM) is also analyzed. First, the optics module, projection lamp and fans are removed from a commercial beam projector and instead some electric circuits to compensate their removal are manufactured and then, by inserting them into the beam projector, a new XGA-SLM is finally implemented. Second, from some optical experimental results, this TFT-SLM is found to have a good optical linearity in amplitude and phase modulation characteristics as a function of the input gray levels. Especially, through implementation of a binary phase-type correlator such as BPEJTC by using the suggested TFT-LCD panel, the implemented SLM is proposed as a new relatively low-cost and high resolution SLM for optical information processing.

Compensation of the Thickness Nonuniformity in an LCD for Optical Spatial Light Modulation and its Optical Modulation Properties (공간적 광신호 변조를 위한 액정디스플레이의 두께 불균일성 보상 및 그 광변조 특성)

  • 정신일;김홍만;정재우;강민호;김수중
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.1
    • /
    • pp.88-93
    • /
    • 1988
  • For coherent optical information processing the thickness uniformity of the spatial light modulators(SLMs)is highly demanded. The liquid crystal display(LCD), which is commercialized as a pocket-sized television, is considered as one of the most cheap 2-dimensional SLM. But usually it has lack of thickness uniformity. Thus phase correction to compensate the thickness nonuniformity must be preceded before it is used as an SLM. In this paper relatively easy phase compensation method applicable to binary SLMs is discussed and experimentally verified by using the optical joint transformantion concept.

  • PDF

Fomation and Properties of Multiple-Tone Spatial Light Modulator using Garnet Film with In-Plane Magnetization

  • Tsuzuki, A.;Uchida, H.;Takagi, H.;Lim, P.B.;Inoue, M.
    • Journal of Magnetics
    • /
    • v.11 no.3
    • /
    • pp.143-146
    • /
    • 2006
  • We attempted to fabricate a new type of magneto optic spatial light modulator (MO-SLM) for multiple-tone modulation by using in-plane magnetization. In the MO-SLM, magnetic property of magneto-optical layer was modified to be suitable for multiple-tone expression by substituting Al in Bi:YIG film. At a driving current to 28 mA in an electrode of the fabricated MO-SLM, changes in brightness of pixels were observed using a polarization microscope.

Flicker-Free Spatial-PSK Modulation for Vehicular Image-Sensor Systems Based on Neural Networks (신경망 기반 차량 이미지센서 시스템을 위한 플리커 프리 공간-PSK 변조 기법)

  • Nguyen, Trang;Hong, Chang Hyun;Islam, Amirul;Le, Nam Tuan;Jang, Yeong Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.843-850
    • /
    • 2016
  • This paper introduces a novel modulation scheme for vehicular communication in taking advantage of existing LED lights available on a car. Our proposed 2-Phase Shift Keying (2-PSK) is a spatial modulation approach in which a pair of LED light sources in a car (either rear LEDs or front LEDs) is used as a transmitter. A typical camera (i.e. low frame rate at no greater than 30fps) that either a global shutter camera or a rolling shutter camera can be used as a receiver. The modulation scheme is a part of our Image Sensor Communication proposal submitted to IEEE 802.15.7r1 (TG7r1) recently. Also, a neural network approach is applied to improve the performance of LEDs detection and decoding under the noisy situation. Later, some analysis and experiment results are presented to indicate the performance of our system

Display Technologies for Immersive Devices and Electronic Skin (디스플레이 현황과 발전방향 -실감 및 스킨 기기로의 확대)

  • Park, Y.J.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.2
    • /
    • pp.10-18
    • /
    • 2019
  • Since the introduction of CRT(Cathode Ray Tube) in the 1950s, display technologies have been developed continuously. Flat panel displays such as PDP(Plasma Display Panel) and LCD(Liquid Crystal Display) were commercialized in the late 1990s, and OLED(Organic Light Emitting Diodes) and Micro-LED(Micro-Light Emitting Diodes) are now being developed and are becoming widespread. In the future, we expect to develop ultra-realistic, flexible, embedded sensor displays. Ultra-realistic display can be applied to AR/VR(Augmented Reality/Virtual Reality) devices and spatial light modulators for holography. The sensor-embedded display can be applied to robots; electronic skin; and security devices, including iris recognition sensors, fingerprint recognition sensors, and tactile sensors. AR/VR technology must be developed to meet technical requirements such as viewing angle, resolution, and refresh rate. Holography requires optical modulation technology that can significantly improve resolution, viewing angle, and modulation method to enable wide-view and high-quality hologram stereoscopic images. For electronic skin, stable mass production technology, large-area arrays, and system integration technologies should be developed.