• 제목/요약/키워드: spatial histogram

검색결과 158건 처리시간 0.03초

히스토그램 시퀀스 구성을 위한 공간 지역성 보존 척도 (Spatial Locality Preservation Metric for Constructing Histogram Sequences)

  • 이정곤;김범수;문양세;최미정
    • 정보화연구
    • /
    • 제10권1호
    • /
    • pp.79-91
    • /
    • 2013
  • 본 논문은 히스토그램 시퀀스(histogram sequence)에 저차원 변환을 적용할 때, 어떤 공간 채움 곡선(space filling curve: SFC)의 성능이 가장 좋은지를 판단하는 체계적인 평가방법을 제안한다. 히스토그램 시퀀스는 이미지를 주어진 SFC에 따라 시계열 형태로 표현한 것을 말한다. 히스토그램 시퀀스는 매우 고차원이므로 저장 및 검색이 매우 어렵다. 효율적인 저장 및 검색을 위해서 시계열 저차원 변환의 하한을 사용할 수 있는데, 이 하한의 성능은 SFC의 종류에 따라 큰 영향을 받게 된다. 본 논문에서는 히스토그램 시퀀스를 저차원 변환할 때 어떤 SFC의 성능이 좋은지를 평가하기 위해, "히스토그램 시퀀스에서 엔트리들이 인접하면 이미지에서도 해당 셀들이 인접해야 한다"는 공간지역성(spatial locality)의 개념을 제안한다. 다음으로, 공간 지역성을 정량적으로 평가할 수 있는 공간 지역성 보존 척도(spatial locality preservation metric)를 제안하고, 이를 계산하기 위한 정형적인 방법을 제시한다. 본 논문에서는 공간 지역성 보존 척도 측면에서 총 다섯 가지의 SFC를 평가하고, 이 평가 결과가 실제 이미지 매칭의 저차원 변환 성능 평가와 유사함을 확인한다. 또한, 저차원 변환 기반의 k-NN(k-nearest neighbors) 검색을 실험하여, 공간 지역성 보존 척도가 가장 낮은 힐버트-오더가 k-NN 검색에서도 가장 좋은 성능을 보임을 통해, 제안한 공간 지역성 보존 척도의 유용성을 입증한다.

Multiple People Labeling and Tracking Using Stereo

  • Setiawan, Nurul Arif;Hong, Seok-Ju;Lee, Chil-Woo
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.630-635
    • /
    • 2007
  • In this paper, we propose a system for multiple people tracking using fragment based histogram matching. Appearance model is based on IHLS color histogram which can be calculated efficiently using integral histogram representation. Since histograms will loss all spatial information, we define a fragment based region representation which retain spatial information, robust against occlusion and scale issue by using disparity information. Multiple people labeling is maintained by creating online appearance representation for each people detected in scene and calculating fragment vote map. Initialization is performed automatically from background segmentation step.

  • PDF

Selectivity Estimation for Spatial Databases

  • Chi, Jeong-Hee;Lee, Jin-Yul;Ryu, Keun-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.766-768
    • /
    • 2003
  • Selectivity estimation for spatial query is curial in Spatial Database Management Systems(SDBMS). Many works have been performed to estimate accurate selectivity. Although they deal with some problems such as false-count, multi-count arising from properties of spatial dataset, they can not get such effects in little memory space.* Therefore, we need to compress spatial dataset into little memory. In this paper, we propose a new technique called MW Histogram which is able to compress summary data and get reasonable results. Our method is based on two techniques:(a)MinSkew partitioning algorithm which deal with skewed spatial datasets. efficiently (b) Wavelet transformation which compression effect is proven. We evaluate our method via real datasets. The experimental result shows that the MW Histogram has the ability of providing estimates with low relative error and retaining the similar estimates even if memory space is small.

  • PDF

공간 계층적 구조 기반 지역 기술자 활용 얼굴인식 기술 (Using Spatial Pyramid Based Local Descriptor for Face Recognition)

  • 김경태;최재영
    • 한국멀티미디어학회논문지
    • /
    • 제20권5호
    • /
    • pp.758-768
    • /
    • 2017
  • In this paper, we present a novel method to extract face representation based on multi-resolution spatial pyramid. In our method, a face is subdivided into increasingly finer sub-regions (local regions) and represented at multiple levels of histogram representations. To cope with misaligned problem, patch-based local descriptor extraction has been also developed in a novel way. To preserve multiple levels of detail in local characteristics and also encode holistic spatial configuration, histograms from all levels of spatial pyramid are integrated by using dimensionality reduction and feature combination, leading to our spatial-pyramid face feature representation. We incorporate our proposed face features into general face recognition pipeline and achieve state-of-the-art results on challenging face recognition problems.

공간 히스토그램과 웨이브릿 모멘트의 융합에 의한 영상검색 (Image Retrieval Using the Fusion of Spatial Histogram and Wavelet Moments)

  • 서상용;손재곤;김남철
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(4)
    • /
    • pp.11-14
    • /
    • 2000
  • We present an image retrieval method that improves retrieval rate by using the fusion of histogram and wavelet moment features. The key idea is that images similar to a query image are selected in DB by using the wavelet moment features. Then the result images are retrieved from the selected images by using histogram method. In order to evaluate the performance of the proposed method, we use Brodatz texture database, MPEG-7 T1 database and Corel Draw photo. Experimental result shows that the proposed method is better than each of histogram method and wavelet moment method.

  • PDF

영상 개선을 위한 공간 영역에서의 다해상도 히스토그램 지정 기법 (Multiresolution Histogram Specification Method in The Spatial Domain for Image Enhancement)

  • 박세혁;허경무
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.169-171
    • /
    • 2009
  • The histogram specification is to change the histogram shape of the image into the already defined shape. This technique can be applied usefully in various image processing fields which include a machine vision. However, the histogram specification technique has its basic limits. For example, the histogram does not have location information of pixel within the image and receives the digital image, which is stored through a quantization process, as an input. Namely, the accuracy of specification falls in the high-resolution image because the larger the resolution of image is becoming, the more the pixels having similar value are becoming. Therefore, we proposed the multiresolution histogram specification method for improving the accuracy of specification. Consequently, we can know that if the histogram specification is accomplished by using the proposed algorithm, destination image and source image were changed almost similarly.

  • PDF

그레이 레벨의 공간적 상관관계 기반 이진화 (Binarization Based on the Spatial Correlation of Gray Levles)

  • 서석태;손세호;이인근;정혜천;권순학
    • 한국지능시스템학회논문지
    • /
    • 제17권4호
    • /
    • pp.466-471
    • /
    • 2007
  • Otsu의 임계값 결정법을 포함한 기존의 임계값 결정 기법은 그레이 레벨 빈도수 히스토그램 정보를 이용하여 임계값을 결정한다. 그러나 빈도수 히스토그램은 입력 영상에서 그레이 레벨 빈도수 정보만을 재구성한 것이므로, 입력 영상의 그레이 레벨의 분포 및 그레이 레벨간의 관계성을 포함하지 않는다. 따라서 임계값 결정에 있어서 영상의 정보를 충분히 반영하지 못하여 때때로 부적절한 임계값을 제시한다. 본 논문에서는 빈도수 정보뿐만 아니라 그레이 레벨간의 상관관계함수를 정의하고, 정의된 상관관계함수를 이용하여 공간적 상관관계 정보 추출 및 추출된 정보로부터 임계값을 결정하는 기법을 제안한다. 제안된 기법의 타당성을 빈도수 히스토그램에 기반한 Otsu의 임계값 결정법과의 비교 실험을 통하여 보인다.

유연한 로지스틱 변환함수를 이용한 영상의 히스토그램 평활화 (Image Histogram Equalization Using Flexible Logistic Transformation Function)

  • 조용현
    • 한국지능시스템학회논문지
    • /
    • 제19권6호
    • /
    • pp.787-795
    • /
    • 2009
  • 본 논문에서는 영상의 화질개선을 위해 로지스틱 함수에 기반을 둔 히스토그램 평활화 방법을 제안하였다. 여기서 히스토그램 평활화는 영상의 밝기를 조정함으로써 화질을 개선하는 간단하고 효과적인 공간영역 기반 처리기법이다. 또한 로지스틱 함수는 비선형의 변환함수로 영상의 명암도 발생빈도수에 따라 밝기개선 정도를 적응적으로 조정하기 위함이다. 특히 영상의 히스토그램에서 최대 발생빈도수를 가지는 명암도와 최대 명암도 및 전체 픽셀수만을 이용한 유연한 비대칭의 로지스틱 함수를 제안함으로써, 기존 로지스틱 함수에서의 지수함수 계산 부담과 최적의 계수 값을 경험적으로 사전에 설정해야하는 제약을 해결하였다. 제안된 기법을 다양한 크기의 해상도와 히스토그램 분포를 가지는 영상을 대상으로 실험한 결과, 기존의 히스토그램 평활화와 적응적 변형 히스토그램 평활화보다도 우수한 화질개선 성능과 빠른 평활화 속도가 있음을 확인하였다. 또한 제안된 기법은 멀티미디어 시스템에서 실시간 평활화 기법으로도 충분히 이용될 수 있음을 확인하였다.

A Novel Filter ed Bi-Histogram Equalization Method

  • Sengee, Nyamlkhagva;Choi, Heung-Kook
    • 한국멀티미디어학회논문지
    • /
    • 제18권6호
    • /
    • pp.691-700
    • /
    • 2015
  • Here, we present a new framework for histogram equalization in which both local and global contrasts are enhanced using neighborhood metrics. When checking neighborhood information, filters can simultaneously improve image quality. Filters are chosen depending on image properties, such as noise removal and smoothing. Our experimental results confirmed that this does not increase the computational cost because the filtering process is done by our proposed arrangement of making the histogram while checking neighborhood metrics simultaneously. If the two methods, i.e., histogram equalization and filtering, are performed sequentially, the first method uses the original image data and next method uses the data altered by the first. With combined histogram equalization and filtering, the original data can be used for both methods. The proposed method is fully automated and any spatial neighborhood filter type and size can be used. Our experiments confirmed that the proposed method is more effective than other similar techniques reported previously.

칼라-공간 히스토그램과 생성 규칙을 이용한 자연 영상 레이블링 및 분류 기법 (Natural Image Labeling and Classification Technique by Color-Spatial Histogram and Production Rules)

  • 김준영;신수연;김우생
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(4)
    • /
    • pp.153-156
    • /
    • 2002
  • The image labeling and classification is one of the important tasks for a content-based image retrieval and an image understanding. This paper propose a new technique to label and classify natural images with a color-spatial histogram and production rules. We show that our proposed method is very efficient for a natural image composed of a few regions.

  • PDF