본 논문은 히스토그램 시퀀스(histogram sequence)에 저차원 변환을 적용할 때, 어떤 공간 채움 곡선(space filling curve: SFC)의 성능이 가장 좋은지를 판단하는 체계적인 평가방법을 제안한다. 히스토그램 시퀀스는 이미지를 주어진 SFC에 따라 시계열 형태로 표현한 것을 말한다. 히스토그램 시퀀스는 매우 고차원이므로 저장 및 검색이 매우 어렵다. 효율적인 저장 및 검색을 위해서 시계열 저차원 변환의 하한을 사용할 수 있는데, 이 하한의 성능은 SFC의 종류에 따라 큰 영향을 받게 된다. 본 논문에서는 히스토그램 시퀀스를 저차원 변환할 때 어떤 SFC의 성능이 좋은지를 평가하기 위해, "히스토그램 시퀀스에서 엔트리들이 인접하면 이미지에서도 해당 셀들이 인접해야 한다"는 공간지역성(spatial locality)의 개념을 제안한다. 다음으로, 공간 지역성을 정량적으로 평가할 수 있는 공간 지역성 보존 척도(spatial locality preservation metric)를 제안하고, 이를 계산하기 위한 정형적인 방법을 제시한다. 본 논문에서는 공간 지역성 보존 척도 측면에서 총 다섯 가지의 SFC를 평가하고, 이 평가 결과가 실제 이미지 매칭의 저차원 변환 성능 평가와 유사함을 확인한다. 또한, 저차원 변환 기반의 k-NN(k-nearest neighbors) 검색을 실험하여, 공간 지역성 보존 척도가 가장 낮은 힐버트-오더가 k-NN 검색에서도 가장 좋은 성능을 보임을 통해, 제안한 공간 지역성 보존 척도의 유용성을 입증한다.
In this paper, we propose a system for multiple people tracking using fragment based histogram matching. Appearance model is based on IHLS color histogram which can be calculated efficiently using integral histogram representation. Since histograms will loss all spatial information, we define a fragment based region representation which retain spatial information, robust against occlusion and scale issue by using disparity information. Multiple people labeling is maintained by creating online appearance representation for each people detected in scene and calculating fragment vote map. Initialization is performed automatically from background segmentation step.
Selectivity estimation for spatial query is curial in Spatial Database Management Systems(SDBMS). Many works have been performed to estimate accurate selectivity. Although they deal with some problems such as false-count, multi-count arising from properties of spatial dataset, they can not get such effects in little memory space.* Therefore, we need to compress spatial dataset into little memory. In this paper, we propose a new technique called MW Histogram which is able to compress summary data and get reasonable results. Our method is based on two techniques:(a)MinSkew partitioning algorithm which deal with skewed spatial datasets. efficiently (b) Wavelet transformation which compression effect is proven. We evaluate our method via real datasets. The experimental result shows that the MW Histogram has the ability of providing estimates with low relative error and retaining the similar estimates even if memory space is small.
In this paper, we present a novel method to extract face representation based on multi-resolution spatial pyramid. In our method, a face is subdivided into increasingly finer sub-regions (local regions) and represented at multiple levels of histogram representations. To cope with misaligned problem, patch-based local descriptor extraction has been also developed in a novel way. To preserve multiple levels of detail in local characteristics and also encode holistic spatial configuration, histograms from all levels of spatial pyramid are integrated by using dimensionality reduction and feature combination, leading to our spatial-pyramid face feature representation. We incorporate our proposed face features into general face recognition pipeline and achieve state-of-the-art results on challenging face recognition problems.
We present an image retrieval method that improves retrieval rate by using the fusion of histogram and wavelet moment features. The key idea is that images similar to a query image are selected in DB by using the wavelet moment features. Then the result images are retrieved from the selected images by using histogram method. In order to evaluate the performance of the proposed method, we use Brodatz texture database, MPEG-7 T1 database and Corel Draw photo. Experimental result shows that the proposed method is better than each of histogram method and wavelet moment method.
The histogram specification is to change the histogram shape of the image into the already defined shape. This technique can be applied usefully in various image processing fields which include a machine vision. However, the histogram specification technique has its basic limits. For example, the histogram does not have location information of pixel within the image and receives the digital image, which is stored through a quantization process, as an input. Namely, the accuracy of specification falls in the high-resolution image because the larger the resolution of image is becoming, the more the pixels having similar value are becoming. Therefore, we proposed the multiresolution histogram specification method for improving the accuracy of specification. Consequently, we can know that if the histogram specification is accomplished by using the proposed algorithm, destination image and source image were changed almost similarly.
Otsu의 임계값 결정법을 포함한 기존의 임계값 결정 기법은 그레이 레벨 빈도수 히스토그램 정보를 이용하여 임계값을 결정한다. 그러나 빈도수 히스토그램은 입력 영상에서 그레이 레벨 빈도수 정보만을 재구성한 것이므로, 입력 영상의 그레이 레벨의 분포 및 그레이 레벨간의 관계성을 포함하지 않는다. 따라서 임계값 결정에 있어서 영상의 정보를 충분히 반영하지 못하여 때때로 부적절한 임계값을 제시한다. 본 논문에서는 빈도수 정보뿐만 아니라 그레이 레벨간의 상관관계함수를 정의하고, 정의된 상관관계함수를 이용하여 공간적 상관관계 정보 추출 및 추출된 정보로부터 임계값을 결정하는 기법을 제안한다. 제안된 기법의 타당성을 빈도수 히스토그램에 기반한 Otsu의 임계값 결정법과의 비교 실험을 통하여 보인다.
본 논문에서는 영상의 화질개선을 위해 로지스틱 함수에 기반을 둔 히스토그램 평활화 방법을 제안하였다. 여기서 히스토그램 평활화는 영상의 밝기를 조정함으로써 화질을 개선하는 간단하고 효과적인 공간영역 기반 처리기법이다. 또한 로지스틱 함수는 비선형의 변환함수로 영상의 명암도 발생빈도수에 따라 밝기개선 정도를 적응적으로 조정하기 위함이다. 특히 영상의 히스토그램에서 최대 발생빈도수를 가지는 명암도와 최대 명암도 및 전체 픽셀수만을 이용한 유연한 비대칭의 로지스틱 함수를 제안함으로써, 기존 로지스틱 함수에서의 지수함수 계산 부담과 최적의 계수 값을 경험적으로 사전에 설정해야하는 제약을 해결하였다. 제안된 기법을 다양한 크기의 해상도와 히스토그램 분포를 가지는 영상을 대상으로 실험한 결과, 기존의 히스토그램 평활화와 적응적 변형 히스토그램 평활화보다도 우수한 화질개선 성능과 빠른 평활화 속도가 있음을 확인하였다. 또한 제안된 기법은 멀티미디어 시스템에서 실시간 평활화 기법으로도 충분히 이용될 수 있음을 확인하였다.
Here, we present a new framework for histogram equalization in which both local and global contrasts are enhanced using neighborhood metrics. When checking neighborhood information, filters can simultaneously improve image quality. Filters are chosen depending on image properties, such as noise removal and smoothing. Our experimental results confirmed that this does not increase the computational cost because the filtering process is done by our proposed arrangement of making the histogram while checking neighborhood metrics simultaneously. If the two methods, i.e., histogram equalization and filtering, are performed sequentially, the first method uses the original image data and next method uses the data altered by the first. With combined histogram equalization and filtering, the original data can be used for both methods. The proposed method is fully automated and any spatial neighborhood filter type and size can be used. Our experiments confirmed that the proposed method is more effective than other similar techniques reported previously.
The image labeling and classification is one of the important tasks for a content-based image retrieval and an image understanding. This paper propose a new technique to label and classify natural images with a color-spatial histogram and production rules. We show that our proposed method is very efficient for a natural image composed of a few regions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.