• Title/Summary/Keyword: spatial effective range

Search Result 100, Processing Time 0.025 seconds

Analysis on Effective Range of Temperature Observation Network for Evaluating Urban Thermal Environment (도시 열환경 평가를 위한 기온관측망 영향범위 분석)

  • Kim, Hyomin;Park, Chan;Jung, Seunghyun
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.69-75
    • /
    • 2016
  • Climate change has resulted in the urban heat island (UHI) effect throughout the globe, contributing to heat-related illness and fatalities. In order to reduce such damage, it is necessary to improve the climate observation network for precise observation of the urban thermal environment and quick UHI forecasting system. Purpose: This study analyzed the effective range of the climate observation network and the distribution of the existing Automatic Weather Stations (AWS) in Seoul to propose optimal locations for additional installment of AWS. Method: First, we performed quality analysis to pinpoint missing values and outliers within the high-density temperature data measured. With the result from the analysis, a spatial autocorrelation structure in the temperature data was tested to draw the effective range and correlation distance for each major time period. Result: As a result, it turned out that the optimal effective range for the climate observation network in Seoul in July was a radius of 2.8 kilometers. Based on this result, population density, and temperature data, we selected the locations for additional installment of AWS. This study is expected to be used to generate urban temperature maps, select and move measurement locations since it is able to suggest valid, specific spatial ranges when the data measured in point is converted into surface data.

Treatment of non-resonant spatial self-shielding effect of double heterogeneous region

  • Tae Young Han;Hyun Chul Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.749-755
    • /
    • 2023
  • A new approximation method was proposed for treating the non-resonant spatial self-shielding effects of double heterogeneous region such as the double heterogeneous effect of VHTR fuel compact in the thermal energy range and that of BP compact with BISO. The method was developed based on the effective homogenization method and a spherical unit cell model with explicit coated layers and a matrix layer. The self-shielding factor was derived from the relation between the collision probabilities for a double heterogeneous compact and the effective cross section for the homogenized compact. First, the collision probabilities and transmission probabilities for all layers of the spherical model were calculated using conventional collision probability solver. Then, the effective cross section for the homogenized sphere cell representing the homogenized compact was obtained from the transmission probability calculated using the probability density function of a chord length. The verification calculations revealed that the proposed method can predict the self-shielding factor with a maximum error of 2.3% and the double heterogeneous effect with a maximum error of 200 pcm in the typical VHTR problems with various packing fractions and BP compact sizes.

Space Design for Enhancing Learning Ability with Children's Character Type - Through Analyzed Enneagram Tool - (어린이 성격유형별 학습능력 향상을 위한 공간디자인 구축 방안 - 에니어그램 성격 특성 분석을 통하여 -)

  • Kim, Kook-Sun
    • Journal of the Korea Furniture Society
    • /
    • v.24 no.1
    • /
    • pp.42-50
    • /
    • 2013
  • The objective of this study is to explore basic type of character of humans and to suggest a design method of establishing a spatial construction environment for developing effective learning ability based on such type of character. As a range of research, spatial formative language was deduced and space design strategy for the children was suggested through an analysis of spatial requirements by exploring connectivity depending on features of 9 types of character through Enneagram. As a method of research, a process of suggesting a concrete method after defining an element of spatial construction and deducing a formative language for developing and strengthening effective learning ability for each type of character. As a result of research, the methods of children space design strategy for enhancing learning ability for leadership in a future specific fields were suggested through 9 different type of character with image of case study.

  • PDF

K-function Test for he Spatial Randomness among the Earthquakes in the Korean Peninsula

  • Baek, Jangsung;Bae, Jong-Sung
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.499-505
    • /
    • 2001
  • Kim and Baek (2000) tested the spatial randomness for he earthquake occurrence in the Korean Peninsula by using the nearest-neighbor test statistics and empirical distribution functions. The K-function, however, has obvious advantages over the methods used in Kim and Baek (2000), such as it does not depend on the shape of the study region and is an effective summary of spatial dependence over a wide range of scales. We applied the K-function method for testing the randomness to both of the historical and the instrumental seismicity data. It was found that he earthquake occurrences for historical and instrumental seismicity data are not random and clustered rather than scattered.

  • PDF

Applicability of Flash LADAR to 3D Spatial Information Acquisition on a Construction Site;Performance Review (건설 산업에서의 3차원 공간 모델링을 위한 플래시 레이다의 적용성 검토에 관한 연구)

  • Son, Hyo-Joo;Kim, Chang-Wan;Yoo, Ji-Yeon;Kim, Hyoung-Kwan;Han, Seung-Heon;Kim, Moon-Kyum
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.909-914
    • /
    • 2007
  • Today's dynamic nature of the construction environment requires management systems to be active enough to take real-time decisions. For real-time decision making, effective 3D spatial information acquisition is imperative. Various 3D data acquisition technologies are being developed and tested for 3D spatial information acquisition and its use for wide range of areas in the construction industry, however, there are shortcomings in these technologies. The major problems are long processing time and high cost which make current technologies impossible to be used for real-time applications. Laser-based Flash LADAR that illuminates the entire scene with diffuse laser light is comparatively fast and cost effective, therefore it is well suited for 3D spatial modeling of dynamic environment on a construction site. This paper presents experimental results to evaluate the performance of flash LADAR and discuss issues of applicability of Flash LADAR to 3D spatial modeling on a construction site.

  • PDF

Effective Application of Digital Photogrammetry using Local Terrain Model (국부지형모형을 이용한 수치사진측량의 효율적 적용)

  • 박운용;김정희;문두열;정공운
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.199-204
    • /
    • 2003
  • Digital high resolution cameras are widely available, and are increasingly use in digital close-range photogrammetry. And photogrammetry instruments are developing rapidly and the precision is improving continuously, The building of 3D terrains of high precision are possible and the calculation of the areas or the earthwork volumes have high precision due to the development of the technique of the spatial information system using computer, In this study, using the digital camera which has capacity of keeping numerical value by itself and easy carrying, we analyze the positioning error according to various change of photographing condition. Also we t]v to find a effective method of acquiring basis data for 3D monitoring of high-accuracy in pixel degree through digital close-range photogrammetry with bundle adjustment for local terrain model generation and earthwork volume.

  • PDF

Accuracy evaluation of near-surface air temperature from ERA-Interim reanalysis and satellite-based data according to elevation

  • Ryu, Jae-Hyun;Han, Kyung-Soo;Park, Eun-Bin
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.6
    • /
    • pp.595-600
    • /
    • 2013
  • In order to spatially interpolate the near-surface temperature (Ta) values, satellite and reanalysis methods were used from previous studies. Accuracy of reanalysis Ta was generally better than that of satellite-based Ta, but spatial resolution of reanalysis Ta was large to use at local scale studies. Our purpose is to evaluate accuracy of reanalysis Ta and satellite-based Ta according to elevation from April 2011 to March 2012 in Northeast Asia that includes various topographic features. In this study, we used reanalysis data that is ERA-Interim produced by European Centre for Medium-Range Weather Forecasts (ECMWF), and estimated satellite-based Ta using Digital Elevation Meter (DEM), Normalized Difference Vegetation Index (NDVI), difference between brightness temperature of $11{\mu}m$ and $12{\mu}m$, and Land Surface Temperature (LST) data. The DEM data was used as auxiliary data, and observed Ta at 470 meteorological stations was used in order to evaluate accuracy. We confirmed that the accuracy of satellite-based Ta was less accurate than that of ERA-Interim Ta for total data. Results of analyzing according to elevation that was divided nine cases, ERA-Interim Ta showed higher accurate than satellite-based Ta at the low elevation (less than 500 m). However, satellite-based Ta was more accurate than ERA-Interim Ta at the higher elevation from 500 to 3500 m. Also, the width of the upper and lower quartile appeared largely from 2500 to 3500 m. It is clear from these results that ERA-Interim Ta do not consider elevation because of large spatial resolution. Therefore, satellite-based Ta was more effective than ERA-Interim Ta in the regions that is range from 500 m to 3500 m, and satellite-based Ta was recommended at a region of above 2500 m.

Passive earth pressure for retaining structure considering unsaturation and change of effective unit weight of backfill

  • Zheng, Li;Li, Lin;Li, Jingpei;Sun, De'an
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.207-215
    • /
    • 2020
  • This paper presents a kinematic limit analysis for passive earth pressure of rigid retaining structures considering the unsaturation of the backfill. Particular emphasis in the current work is focused on the effects of the spatial change in the degree of saturation on the passive earth pressure under different steady-infiltration/evaporation conditions. The incorporation of change of effective unit weight with degree of saturation is the main contribution of this study. The problem is formulated based on the log-spiral failure model rather than the linear wedge failure model, in which both the spatial variations of suction and soil effective unit weight are taken into account. Parametric studies, which cover a wide range of flow conditions, soil types and properties, wall batter, back slope angle as well as the interface friction angle, are performed to investigate the effects of these factors on the passive pressure and the corresponding shape of potential failure surfaces in the backfill. The results reveal that the flow conditions have significant effects on the suction and unit weight of the clayey backfill, and hence greatly impact the passive earth pressure of retaining structures. It is expected that present study could provide an insight into evaluation of the passive earth pressure of retaining structures with unsaturated backfills.

Red supergiant stars in NGC 4449, NGC 5055, and NGC 5457

  • Chun, Sang-Hyun;Sohn, Young-Jong;Asplund, Martin;Casagrande, Luca
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.44.2-45
    • /
    • 2016
  • We present near-infrared photometric properties of red supergiant stars (RSGs) in three galaxies NGC 4449, NGC 5055 and NGC 5457. The near-infrared imaging data of WFCAM UKIRT were used and combined with optical archive data to identify the RSGs in the galaxies. We found that the RSGs can be identified from the foreground Galactic stars in (i-K, ri) colour-colour diagram. The effective temperatures and luminosities of the identified RSGs are estimated from JHK photometry using MARCS model. In the H-R diagram, the majority of RSGs in the galaxies are distributed between $logL/L{\odot}=4.8$ and 5.7, and their effective temperature and luminosities agree with the current evolutionary tracks with masses in the range $9-30M{\odot}$. We also compared the spatial distribution of RSGs with the HII regions. A tight spatial correlation between RSGs and HII region was found in NGC 4449 and NGC 5457. We do not find a clear metallicity dependance on the RSG effective temperature in the three galaxies, but the maximum luminosity of the three galaxies is constant at $logL/L{\odot}{\sim}5.6$. Additional spectroscopy data, including photometry are essential to examine whether the physical properties of RSGs change with metallicity.

  • PDF

An Adaptive Signal Transmission/Reception Scheme for Spectral Efficiency Improvement of Multiple Antenna Systems in Cellular Environments (셀룰러 환경에서 다중 안테나 시스템의 전송 효율 증대를 위한 적응적 송수신 방안)

  • Jin, Gwy-Un;Kim, Seong-Min;Chang, Jae-Won;Sung, Won-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6C
    • /
    • pp.429-437
    • /
    • 2008
  • Multiple-input multiple-output (MIMO) techniques can be used for the spectral efficiency enhancement of the cellular systems, which can be categorized into spatial multiplexing (SM) and spatial diversity schemes. MIMO systems suffer a severe performance degradation due to the intercell interference from the adjacent cells as the mobile terminal moves toward the cell boundary. Therefore for the spectral efficiency enhancement, an appropriate transmission scheme for the given channel environment and reception scheme which can mitigate the intercell interference are required. In this paper, we propose an adaptive signal transmission/reception scheme for the spectral efficiency improvement of $M_R{\times}M_T$ MIMO systems, present the decision criteria for the adaptive operation of the proposed scheme, and demonstrate the performance gain. The proposed scheme performs adaptive transmission using spatial multiplexing and spatial diversity, and adaptive reception using maximal ratio combining (MRC) and intercell spatial demultiplexing (ISD) when the spatial diversity transmission is used at the transmitter. Spatial multiplexing/demultiplexing is performed at the high signal-to-interference ratio (SIR) range, and the transmit diversity in conjunction with the adaptive reception uses either conventional MRC or ISD which can mitigate the $M_R-1$ interference signals, based on the mobile location. For the performance evaluation of the proposed adaptive scheme, the probability density function (pdf) of the effective SIR for the transmission/reception methods in consideration are derived for $M_R{\times}M_T$ MIMO systems. Using the results, the average effective SIR and spectral efficiency are presented and compared with simulation results.