• Title/Summary/Keyword: spatial color correlation

Search Result 46, Processing Time 0.025 seconds

DEVELOPMENT OF CHLOROPHYLL ALGORITHM FOR GEOSTATIONARY OCEAN COLOR IMAGER (GOCI)

  • Min, Jee-Eun;Moon, Jeong-Eon;Shanmugam, Palanisamy;Ryu, Joo-Hyung;Ahn, Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.162-165
    • /
    • 2007
  • Chlorophyll concentration is an important factor for physical oceanography as well as biological oceanography. For these necessity many oceanographic researchers have been investigated it for a long time. But investigation using vessel is very inefficient, on the other hands, ocean color remote sensing is a powerful means to get fine-scale (spatial and temporal scale) measurements of chlorophyll concentration. Geostationary Ocean Color Imager (GOCI), for ocean color sensor, loaded on COMS (Communication, Ocean and Meteorological Satellite), will be launched on late 2008 in Korea. According to the necessity of algorithm for GOCI, we developed chlorophyll algorithm for GOCI in this study. There are two types of chlorophyll algorithms. One is an empirical algorithm using band ratio, and the other one is a fluorescence-based algorithms. To develop GOCI chlorophyll algorithm empirically we used bands centered at 412 nm, 443 nm and 555 nm for the DOM absorption, chlorophyll maximum absorption and for absorption of suspended solid material respectively. For the fluorescence-based algorithm we analyzed in-situ remote sensing reflectance $(R_{rs})$ data using baseline method. Fluorescence Line Height $({\Delta}Flu)$ calculated from $R_{rs}$ at bands centered on 681 nm and 688 nm, and ${\Delta}Flu_{(area)}$ are used for development of algorithm. As a result ${\Delta}Flu_{(area)}$ method leads the best fitting for squared correlation coefficient $(R^2)$.

  • PDF

Senior Citizens' Image Preference for Interior Design Styles (실내디자인 스타일에 대한 노인들의 선호이미지 연구)

  • Seo, Min-Woo;Jeong, Yoo-Na
    • Korean Institute of Interior Design Journal
    • /
    • v.21 no.6
    • /
    • pp.109-120
    • /
    • 2012
  • As Korea has rapidly entered the aging society, the Korean government and academia are currently undergoing many researches on senior citizens. There also has been an increase in senior citizens' awareness on the importance of spatial designs that reflect the newly emerged needs brought out by their psychological and emotional changes as well as their physical aspects. Therefore, the purpose of this research is to propose a model for senior citizens' image preference to be adopted in future developments for senior-friendly spatial designs. A literature review and a questionnaire survey were implemented as research methods. The questionnaire survey was conducted at two senior welfare centers located in Seoul and Ansan and two disparate senior colleges, on the subjects of 86 senior citizens aged 60 and older. 7 styles of Romantic, Classic, Country, Modern, Natural, Casual, and Traditional were chosen for the study and the realms to apply the image preference were divided into Space, Element1 and Element2. For Space, its subcategories have been restricted to living room and bedroom while color, furniture and lighting for Element1 and material, pattern and props for Element2. Survey results were statistically analyzed for the correlation among socio-demographic factors of senior citizens, spaces and the elements. The study result showed that older age and men tended to prefer the modern style than younger age or women, and younger women preferred the romantic style. For the color preference in Element1, older men preferred the classic style while women preferred the romantic style. And, for the furniture preference, men with higher income preferred the natural style while women preferred the romantic style. For the pattern preference in Element2, younger people preferred the casual style and it showed that the housing type was the main reason for their preferences. Therefore, the image preference according to their age and gender shall be taken account of as the most important factors when designing environments for senior citizens.

  • PDF

A new pyramid structure for progressive transmission of palletized color images (팔레트를 가지는 칼라 영상의 점진적 전송을 위한 새로운 피라미드 자료 구조)

  • Jo, Yeong-U;Kim, Yeong-Mo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.6
    • /
    • pp.1624-1635
    • /
    • 1996
  • Palletized color images are the dominant type of the image used on Internet and World-Wide Web. In spite of this, most image compression and progressive transmission algorithm have been designed for continuous-tone images. Pallettize images. Palletized images differ from continuous-tone images in such a aspect that values are lookup table indices a new pyramid structure for compression and progressive transmission of a palletized image. In the proposed pyramid structure, the color of a node at higher level is the one that occupies the most part in 4 sons and each node is represented by a type code and several color codes. Since the proposed method do not exploit spatial correlation in an image, it is ideally applied to lossless compression and progressive transmission of palletized images. We have confirmed this through the experimental results.

  • PDF

Adaptive Weight Collaborative Complementary Learning for Robust Visual Tracking

  • Wang, Benxuan;Kong, Jun;Jiang, Min;Shen, Jianyu;Liu, Tianshan;Gu, Xiaofeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.305-326
    • /
    • 2019
  • Discriminative correlation filter (DCF) based tracking algorithms have recently shown impressive performance on benchmark datasets. However, amount of recent researches are vulnerable to heavy occlusions, irregular deformations and so on. In this paper, we intend to solve these problems and handle the contradiction between accuracy and real-time in the framework of tracking-by-detection. Firstly, we propose an innovative strategy to combine the template and color-based models instead of a simple linear superposition and rely on the strengths of both to promote the accuracy. Secondly, to enhance the discriminative power of the learned template model, the spatial regularization is introduced in the learning stage to penalize the objective boundary information corresponding to features in the background. Thirdly, we utilize a discriminative multi-scale estimate method to solve the problem of scale variations. Finally, we research strategies to limit the computational complexity of our tracker. Abundant experiments demonstrate that our tracker performs superiorly against several advanced algorithms on both the OTB2013 and OTB2015 datasets while maintaining the high frame rates.

Comparison of Mesoscale Eddy Detection from Satellite Altimeter Data and Ocean Color Data in the East Sea (인공위성 고도계 자료와 해색 위성 자료 기반의 동해 중규모 소용돌이 탐지 비교)

  • PARK, JI-EUN;PARK, KYUNG-AE
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.282-297
    • /
    • 2019
  • Detection of mesoscale oceanic eddies using satellite data can utilize various ocean parameters such as sea surface temperature (SST), chlorophyll-a pigment concentration in phytoplankton, and sea level altimetry measurements. Observation methods vary for each satellite dataset, as it is obtained using different temporal and spatial resolution, and optimized data processing. Different detection results can be derived for the same oceanic eddies; therefore, fundamental research on eddy detection using satellite data is required. In this study, we used ocean color satellite data, sea level altimetry data, and infrared SST data to detect mesoscale eddies in the East Sea and compared results from different detection methods. The sea surface current field derived from the consecutive ocean color chlorophyll-a concentration images using the maximum cross correlation coefficient and the geostrophic current field obtained from the sea level altimetry data were used to detect the mesoscale eddies in the East Sea. In order to compare the eddy detection from satellite data, the results were divided into three cases as follows: 1) the eddy was detected in both the ocean color and altimeter images simultaneously; 2) the eddy was detected from ocean color and SST images, but no eddy was detected in the altimeter data; 3) the eddy was not detected in ocean color image, while the altimeter data detected the eddy. Through these three cases, we described the difficulties with satellite altimetry data and the limitations of ocean color and infrared SST data for eddy detection. It was also emphasized that study on eddy detection and related research required an in-depth understanding of the mesoscale oceanic phenomenon and the principles of satellite observation.

Retrieval of Aerosol Optical Depth with High Spatial Resolution using GOCI Data (GOCI 자료를 이용한 고해상도 에어로졸 광학 깊이 산출)

  • Lee, Seoyoung;Choi, Myungje;Kim, Jhoon;Kim, Mijin;Lim, Hyunkwang
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.961-970
    • /
    • 2017
  • Despite of large demand for high spatial resolution products of aerosol properties from satellite remote sensing, it has been very difficult due to the weak signal by a single pixel and higher noise from clouds. In this study, aerosol retrieval algorithm with the high spatial resolution ($500m{\times}500m$) was developed using Geostationary Ocean Color Imager (GOCI) data during the Korea-US Air Quality (KORUS-AQ) period in May-June, 2016.Currently, conventional GOCI Yonsei aerosol retrieval(YAER) algorithm provides $6km{\times}6km$ spatial resolution product. The algorithm was tested for its best possible resolution of 500 m product based on GOCI YAER version 2 algorithm. With the new additional cloud masking, aerosol optical depth (AOD) is retrieved using the inversion method, aerosol model, and lookup table as in the GOCI YAER algorithm. In some cases, 500 m AOD shows consistent horizontal distribution and magnitude of AOD compared to the 6 km AOD. However, the 500 m AOD has more retrieved pixels than 6 km AOD because of its higher spatial resolution. As a result, the 500 m AOD exists around small clouds and shows finer features of AOD. To validate the accuracy of 500 m AOD, we used dataset from ground-based Aerosol Robotic Network (AERONET) sunphotometer over Korea. Even with the spatial resolution of 500 m, 500 m AOD shows the correlation coefficient of 0.76 against AERONET, and the ratio within Expected Error (EE) of 51.1%, which are comparable to the results of 6 km AOD.

The GOCI-II Early Mission Marine Fog Detection Products: Optical Characteristics and Verification (천리안 해양위성 2호(GOCI-II) 임무 초기 해무 탐지 산출: 해무의 광학적 특성 및 초기 검증)

  • Kim, Minsang;Park, Myung-Sook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1317-1328
    • /
    • 2021
  • This study analyzes the early satellite mission marine fog detection results from Geostationary Ocean Color Imager-II (GOCI-II). We investigate optical characteristics of the GOCI-II spectral bands for marine fog between October 2020 and March 2021 during the overlapping mission period of Geostationary Ocean Color Imager (GOCI) and GOCI-II. For Rayleigh-corrected reflection (Rrc) at 412 nm band available for the input of the GOCI-II marine fog algorithm, the inter-comparison between GOCI and GOCI-II data showed a small Root Mean Square Error (RMSE) value (0.01) with a high correlation coefficient (0.988). Another input variable, Normalized Localization Standard (NLSD), also shows a reasonable correlation (0.798) between the GOCI and GOCI-II data with a small RMSE value (0.007). We also found distinctive optical characteristics between marine fog and clouds by the GOCI-II observations, showing the narrower distribution of all bands' Rrc values centered at high values for cloud compared to marine fog. The GOCI-II marine fog detection distribution for actual cases is similar to the GOCI but more detailed due to the improved spatial resolution from 500 m to 250 m. The validation with the automated synoptic observing system (ASOS) visibility data confirms the initial reliability of the GOCI-II marine fog detection. Also, it is expected to improve the performance of the GOCI-II marine fog detection algorithm by adding sufficient samples to verify stable performance, improving the post-processing process by replacing real-time available cloud input data and reducing false alarm by adding aerosol information.

A New CSR-DCF Tracking Algorithm based on Faster RCNN Detection Model and CSRT Tracker for Drone Data

  • Farhodov, Xurshid;Kwon, Oh-Heum;Moon, Kwang-Seok;Kwon, Oh-Jun;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.12
    • /
    • pp.1415-1429
    • /
    • 2019
  • Nowadays object tracking process becoming one of the most challenging task in Computer Vision filed. A CSR-DCF (channel spatial reliability-discriminative correlation filter) tracking algorithm have been proposed on recent tracking benchmark that could achieve stat-of-the-art performance where channel spatial reliability concepts to DCF tracking and provide a novel learning algorithm for its efficient and seamless integration in the filter update and the tracking process with only two simple standard features, HoGs and Color names. However, there are some cases where this method cannot track properly, like overlapping, occlusions, motion blur, changing appearance, environmental variations and so on. To overcome that kind of complications a new modified version of CSR-DCF algorithm has been proposed by integrating deep learning based object detection and CSRT tracker which implemented in OpenCV library. As an object detection model, according to the comparable result of object detection methods and by reason of high efficiency and celerity of Faster RCNN (Region-based Convolutional Neural Network) has been used, and combined with CSRT tracker, which demonstrated outstanding real-time detection and tracking performance. The results indicate that the trained object detection model integration with tracking algorithm gives better outcomes rather than using tracking algorithm or filter itself.

Progress Report on the Relationship Between the Bright and Faint Galaxies in Abell 3659

  • Lee, Hye-Ran;Lee, Joon Hyeop;Kim, Minjin;Oh, Seulhee;Ree, Chang Hee;Jeong, Hyunjin;Kyeong, Jaemann;Kim, Sang Chul;Lee, Jong Chul;Ko, Jongwan;Park, Byeong-Gon;Sheen, Yun-Kyeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.55.1-55.1
    • /
    • 2013
  • The properties of bright galaxies are closely related to those neighbors and satellite galaxies. However, the effects of nearby companion are known to be very weak in a galaxy cluster, when the companions are bright galaxies. On the other hand, until now, it has not been clear whether the properties of bright galaxies are affected by their faint satellites in a galaxy cluster. Recently, J. H. Lee et al. (in preparation) have found that the colors of bright galaxies in WHL J085910.0+294957, a galaxy cluster at z = 0.3, show a measurable correlation with the mean colors of faint galaxies around them. To confirm that result and to investigate the host-satellite relationship depending on cluster properties, we carry out follow-up studies of a few galaxy clusters, beginning with Abell 3659 (z ~ 0.0907) imaged in the g' and r' bands using IMACS on the Magellan (Baade) 6.5m telescope. Cluster members are selected based on the distributions of color, size and concentration along magnitude and spatial distribution. In this poster, we present some preliminary results: marginal correlations in color between bright galaxies and their faint companions are found at the central region of Abell 3659. The implication of these results is discussed.

  • PDF

Noise reduction Algorithm for CFA Images (컬러 필터 배열 영상에서의 잡음제거 알고리즘)

  • Lee, Min-Seok;Park, Sang-Wook;Kwon, Ji-Yong;Kang, Moon-Gi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.67-69
    • /
    • 2010
  • 대부분의 디지털 카메라는 컬러 필터 배열(Color Filter Array)을 가진 하나의 영상 획득 센서를 사용한다. 따라서 영상획득 이후에 컬러 보간 알고리즘이 필수적으로 진행된다. 또 영상 획득 과정에서 센서의 열화나 암전류 등과 같은 잡음이 발생하여 영상 잡음 제거 알고리즘이 필요하다. 하지만 기존의 대부분의 영상 잡음 제거 알고리즘은 컬러 필터 배열 영상의 특징인 모자이크 데이터 기반이 아닌 컬러 보간 이후의 풀 컬러영상에(YCbCr) 적용되고 있다. 따라서 잡음이 포함된 영상으로 컬러 보간을 할 경우 잡음의 공간적 상관관계(spatial correlation)가 커짐에 의한 잡음 번짐 때문에 컬러 보간 이후의 잡음제거는 더욱 어렵게 된다. 이와 같은 문제를 해결하기 위해 컬러 필터 배열 영상에 대한 잡음제거 알고리즘이 연구되고 있으며, 본 논문에서도 CMOS/CCD의 이미지 센서에서 획득된 베이어 컬러 필터 배열 영상에서 잡음을 제거하는 알고리즘을 제안한다. 이를 위해서 베이어 컬러 필터 배열 영상 데이터에서 경계(edge)의 방향성을 고려한 LMMSE 방법을 기반으로 한 잡음제거 알고리즘을 제안한다. 제안하는 알고리즘은 영상의 경계를 보존해주며 잡음제거 과정 다음에 진행되는 컬러 보간 과정에서의 잡음 번짐의 문제를 해결할 수 있다. 실험 결과를 통해 향상된 잡음 제거 효과를 확인하였다.

  • PDF