• Title/Summary/Keyword: spatial classification

Search Result 960, Processing Time 0.031 seconds

The change of land cover classification accuracies according to spatial resolution in case of Sunchon bay coastal wetland (위성영상 해상도에 따른 순천만 해안습지의 분류 정확도 변화)

  • Ku, Cha-Yong;Hwang, Chul-Sue
    • Journal of the Korean association of regional geographers
    • /
    • v.7 no.1
    • /
    • pp.35-50
    • /
    • 2001
  • Since remotely sensed images of coastal wetlands are very sensitive to spatial resolution, it is very important to select an optimum resolution for particular geographic phenomena needed to be represented. Scale is one of the most important factors in spatial analysis techniques, which is defined as a spatial and temporal interval for a measurement or observation and is determined by the spatial extent of study area or the measurement unit. In order to acquire the optimum scale for a particular subject (i.e., coastal wetlands), measuring and representing the characteristics of attribute information extracted from the remotely sensed images are required. This study aims to explore and analyze the scale effects of attribute information extracted from remotely sensed coastal wetlands images. Specifically, it is focused on identifying the effects of scale in response to spatial resolution changes and suggesting a methodology for exploring the optimum spatial resolution. The LANDSAT TM image of Sunchon Bay was classified by a supervised classification method, Six land cover types were classified and the Kappa index for this classification was 84.6%. In order to explore the effects of scale in the classification procedure, a set of images that have different spatial resolutions were created by a aggregation method. Coarser images were created with the original image by averaging the DN values of neighboring pixels. Sixteen images whose resolution range from 30 m to 480 m were generated and classified to obtain land cover information using the same training set applied to the initial classification. The values of Kappa index show a distinctive pattern according to the spatial resolution change. Up to 120m, the values of Kappa index changed little, but Kappa index decreased dramatically at the 150m. However, at the resolution of 240 m and 270m, the classification accuracy was increased. From this observation, the optimum resolution for the study area would be either at 240m or 270m with respect to the classification accuracy and the best quality of attribute information can be obtained from these resolutions. Procedures and methodologies developed from this study would be applied to similar kinds and be used as a methodology of identifying and defining an optimum spatial resolution for a given problem.

  • PDF

The aplication of fuzzy classification methods to spatial analysis (공간분석을 위한 퍼지분류의 이론적 배경과 적용에 관한 연구 - 경상남도 邑級以上 도시의 기능분류를 중심으로 -)

  • ;Jung, In-Chul
    • Journal of the Korean Geographical Society
    • /
    • v.30 no.3
    • /
    • pp.296-310
    • /
    • 1995
  • Classification of spatial units into meaningful sets is an important procedure in spatial analysis. It is crucial in characterizing and identifying spatial structures. But traditional classification methods such as cluster analysis require an exact database and impose a clear-cut boundary between classes. Scrutiny of realistic classification problems, however, reveals that available infermation may be vague and that the boundary may be ambiguous. The weakness of conventional methods is that they fail to capture the fuzzy data and the transition between classes. Fuzzy subsets theory is useful for solving these problems. This paper aims to come to the understanding of theoretical foundations of fuzzy spatial analysis, and to find the characteristics of fuzzy classification methods. It attempts to do so through the literature review and the case study of urban classification of the Cities and Eups of Kyung-Nam Province. The main findings are summarized as follows: 1. Following Dubois and Prade, fuzzy information has an imprecise and/or uncertain evaluation. In geography, fuzzy informations about spatial organization, geographical space perception and human behavior are frequent. But the researcher limits his work to numerical data processing and he does not consider spatial fringe. Fuzzy spatial analysis makes it possible to include the interface of groups in classification. 2. Fuzzy numerical taxonomic method is settled by Deloche, Tranquis, Ponsard and Leung. Depending on the data and the method employed, groups derived may be mutually exclusive or they may overlap to a certain degree. Classification pattern can be derived for each degree of similarity/distance $\alpha$. By takina the values of $\alpha$ in ascending or descending order, the hierarchical classification is obtained. 3. Kyung-Nam Cities and Eups were classified by fuzzy discrete classification, fuzzy conjoint classification and cluster analysis according to the ratio of number of persons employed in industries. As a result, they were divided into several groups which had homogeneous characteristies. Fuzzy discrete classification and cluste-analysis give clear-cut boundary, but fuzzy conjoint classification delimit the edges and cores of urban classification. 4. The results of different methods are varied. But each method contributes to the revealing the transparence of spatial structure. Through the result of three kinds of classification, Chung-mu city which has special characteristics and the group of Industrial cities composed by Changwon, Ulsan, Masan, Chinhai, Kimhai, Yangsan, Ungsang, Changsungpo and Shinhyun are evident in common. Even though the appraisal of the fuzzy classification methods, this framework appears to be more realistic and flexible in preserving information pertinent to urban classification.

  • PDF

Estimating the Spatial Distribution of Satellite Image Classification Error Using Index of Spatial Distribution (공간분포지표를 이용한 위성영상 분류오차의 공간적 분포 평가)

  • 이병길;김용일;어양담
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.2
    • /
    • pp.129-136
    • /
    • 1999
  • The quality of image classification results is not always uniform over entire image. Thus, this study proposes the concept of ISDd (Index of Spatial Distribution by distance) and ISDs (ISD by scatteredness) for the evaluation of unevenness of result quality, and spatial distribution of satellite image classification errors. The ISDd is indexed mean distance of misclassified pixels and the ISDs is statistical indicator of scatteredness of misclassified pixels. In this study, the ISDd and the ISDs are calculated and evaluated for some satellite images, then misclassified area is extracted and the reasons of misclassification are examined. As the result of this study, using both the ISDd and the ISDs, the basis of decision on adoption/rejection of classification results is offered at sub-image level by evaluation of the local aggregation of misclassified pixels. Using Index of Spatial Distribution. as well as overall classification accuracy, users can understand the spatial distribution of misclassified pixels, and can have the additional criterion of the judgement on suitability and reliability of classification results.

  • PDF

Image classification methods applicable multiple satellite imagery

  • Jeong, Jae-Jun;Kim, Kyung-Ok;Lee, Jong-Hun
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.81-81
    • /
    • 2002
  • Classification is considered as one of the processes of extracting attributes from satellite imagery and is one of the usual functions in the commercial satellite image processing software. Accuracy of classification plays a key role in deciding the usage of its results. Many tremendous efforts far the higher accuracy have been done in such fields; training area selection, classification algorithm. Our research is one of these effort in different manners. In this research, we conduct classification using multiple satellite image data and evidential approach. We statistically consider the posterior probabilities and certainty in maximum likelihood classification and methodologically Dempster's orthogonal sums. Unfortunately, accuracy for the whole data sets has not assessed yet, but accuracy assessments in training fields and check fields shows accuracy improvement over 10% in overall accuracy and over 0.1 in kappa index.

  • PDF

Classification of Multi-sensor Remote Sensing Images Using Fuzzy Logic Fusion and Iterative Relaxation Labeling (퍼지 논리 융합과 반복적 Relaxation Labeling을 이용한 다중 센서 원격탐사 화상 분류)

  • Park No-Wook;Chi Kwang-Hoon;Kwon Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.4
    • /
    • pp.275-288
    • /
    • 2004
  • This paper presents a fuzzy relaxation labeling approach incorporated to the fuzzy logic fusion scheme for the classification of multi-sensor remote sensing images. The fuzzy logic fusion and iterative relaxation labeling techniques are adopted to effectively integrate multi-sensor remote sensing images and to incorporate spatial neighboring information into spectral information for contextual classification, respectively. Especially, the iterative relaxation labeling approach can provide additional information that depicts spatial distributions of pixels updated by spatial information. Experimental results for supervised land-cover classification using optical and multi-frequency/polarization images indicate that the use of multi-sensor images and spatial information can improve the classification accuracy.

Integrating Spatial Proximity with Manifold Learning for Hyperspectral Data

  • Kim, Won-Kook;Crawford, Melba M.;Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.693-703
    • /
    • 2010
  • High spectral resolution of hyperspectral data enables analysis of complex natural phenomena that is reflected on the data nonlinearly. Although many manifold learning methods have been developed for such problems, most methods do not consider the spatial correlation between samples that is inherent and useful in remote sensing data. We propose a manifold learning method which directly combines the spatial proximity and the spectral similarity through kernel PCA framework. A gain factor caused by spatial proximity is first modelled with a heat kernel, and is added to the original similarity computed from the spectral values of a pair of samples. Parameters are tuned with intelligent grid search (IGS) method for the derived manifold coordinates to achieve optimal classification accuracies. Of particular interest is its performance with small training size, because labelled samples are usually scarce due to its high acquisition cost. The proposed spatial kernel PCA (KPCA) is compared with PCA in terms of classification accuracy with the nearest-neighbourhood classification method.

Comparison of Hyperspectral and Multispectral Sensor Data for Land Use Classification

  • Kim, Dae-Sung;Han, Dong-Yeob;Yun, Ki;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.388-393
    • /
    • 2002
  • Remote sensing data is collected and analyzed to enhance understanding of the terrestrial surface. Since Landsat satellite was launched in 1972, many researches using multispectral data has been achieved. Recently, with the availability of airborne and satellite hyperspectral data, the study on hyperspectral data are being increased. It is known that as the number of spectral bands of high-spectral resolution data increases, the ability to detect more detailed cases should also increase, and the classification accuracy should increase as well. In this paper, we classified the hyperspectral and multispectral data and tested the classification accuracy. The MASTER(MODIS/ASTER Airborne Simulator, 50channels, 0.4~13$\mu$m) and Landsat TM(7channels) imagery including Yeong-Gwang area were used and we adjusted the classification items in several cases and tested their classification accuracy through statistical comparison. As a result of this study, it is shown that hyperspectral data offer more information than multispectral data.

  • PDF

Standardization of the Work Classification System in Spatial Data Construction - Laying Stress on the Basic Surveying - (공간데이터 구축의 공종분류체계 표준화 - 기본측량을 중심으로 -)

  • Choi, Byoung-Gil;Cho, Kwang-Hee;Kim, Sung-Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.2 s.36
    • /
    • pp.69-75
    • /
    • 2006
  • This study aims to standardize the work classification system in spatial data. It is the base frame to classify the general information systematically in spatial data construction process. Work process of the surveying firm and rules for basic surveying which is being accomplished in the NGII(National Geographic Information Institute) are investigated and analysed. Therefore, types, individual process, and results of surveying work is standardized. If the work classification system from this study is adopted as the national standard and is also advanced by construction methodology, the spatial data will be managed futuristically and systematically.

  • PDF

Using the fusion of spatial and temporal features for malicious video classification (공간과 시간적 특징 융합 기반 유해 비디오 분류에 관한 연구)

  • Jeon, Jae-Hyun;Kim, Se-Min;Han, Seung-Wan;Ro, Yong-Man
    • The KIPS Transactions:PartB
    • /
    • v.18B no.6
    • /
    • pp.365-374
    • /
    • 2011
  • Recently, malicious video classification and filtering techniques are of practical interest as ones can easily access to malicious multimedia contents through the Internet, IPTV, online social network, and etc. Considerable research efforts have been made to developing malicious video classification and filtering systems. However, the malicious video classification and filtering is not still being from mature in terms of reliable classification/filtering performance. In particular, the most of conventional approaches have been limited to using only the spatial features (such as a ratio of skin regions and bag of visual words) for the purpose of malicious image classification. Hence, previous approaches have been restricted to achieving acceptable classification and filtering performance. In order to overcome the aforementioned limitation, we propose new malicious video classification framework that takes advantage of using both the spatial and temporal features that are readily extracted from a sequence of video frames. In particular, we develop the effective temporal features based on the motion periodicity feature and temporal correlation. In addition, to exploit the best data fusion approach aiming to combine the spatial and temporal features, the representative data fusion approaches are applied to the proposed framework. To demonstrate the effectiveness of our method, we collect 200 sexual intercourse videos and 200 non-sexual intercourse videos. Experimental results show that the proposed method increases 3.75% (from 92.25% to 96%) for classification of sexual intercourse video in terms of accuracy. Further, based on our experimental results, feature-level fusion approach (for fusing spatial and temporal features) is found to achieve the best classification accuracy.

Geostatistical Fusion of Spectral and Spatial Information in Remote Sensing Data Classification

  • Park, No-Wook;Chi, Kwang-Hoon;Kwon, Byung-Doo
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.399-401
    • /
    • 2003
  • This paper presents a geostatistical contextual classifier for the classification of remote sensing data. To obtain accurate spatial/contextual information, a simple indicator kriging algorithm with local means that allows one to estimate the probability of occurrence of certain classes on the basis of surrounding pixel information is applied. To illustrate the proposed scheme, supervised classification of multi-sensor remote sensing data is carried out. Analysis of the results indicates that the proposed method improved the classification accuracy, compared to the method based on the spectral information only.

  • PDF