• Title/Summary/Keyword: sparse signal

Search Result 124, Processing Time 0.025 seconds

Time Delay Estimation Using LASSO (Least Absolute Selection and Shrinkage Operator) (LASSO를 사용한 시간 지연 추정 알고리즘)

  • Lim, Jun-Seok;Pyeon, Yong-Guk;Choi, Seok-Im
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.10
    • /
    • pp.715-721
    • /
    • 2014
  • In decades, many researchers have studied the time delay estimation (TDE) method for the signals in the two different receivers. The channel estimation based TDE is one of the typical TDE methods. The channel estimation based TDE models the time delay between two receiving signals as an impulse response in a channel between two receivers. In general the impulse response becomes sparse. However, most conventional TDE algorithms cannot have utilized the sparsity. In this paper, we propose a TDE method taking the sparsity into consideration. The performance comparison shows that the proposed algorithm improves the estimation accuracy by 10 dB in the white gaussian source. In addition, even in the colored source, the proposed algorithm doesn't show the estimation threshold effect.

Cooperative Bayesian Compressed Spectrum Sensing for Correlated Signals in Cognitive Radio Networks (인지 무선 네트워크에서 상관관계를 갖는 다중 신호를 위한 협력 베이지안 압축 스펙트럼 센싱)

  • Jung, Honggyu;Kim, Kwangyul;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.9
    • /
    • pp.765-774
    • /
    • 2013
  • In this paper, we present a cooperative compressed spectrum sensing scheme for correlated signals in decentralized wideband cognitive radio networks. Compressed sensing is a signal processing technique that can recover signals which are sampled below the Nyquist rate with high probability, and can solve the necessity of high-speed analog-to-digital converter problem for wideband spectrum sensing. In compressed sensing, one of the main issues is to design recovery algorithms which accurately recover original signals from compressed signals. In this paper, in order to achieve high recovery performance, we consider the multiple measurement vector model which has a sequence of compressed signals, and propose a cooperative sparse Bayesian recovery algorithm which models the temporal correlation of the input signals.

Secret Key Generation Using Reciprocity in Ultra-wideband Outdoor Wireless Channels

  • Huang, Jing Jing;Jiang, Ting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.524-539
    • /
    • 2014
  • To investigate schemes of secret key generation from Ultra-wideband (UWB) channel, we study a statistical characterization of UWB outdoor channel for a campus playground scenario based on extensive measurements. Moreover, an efficient secret key generation mechanism exploiting multipath relative delay is developed, and verification of this algorithm is conducted in UWB Line-of-sight (LOS) outdoor channels. For the first time, we compare key-mismatch probability of UWB indoor and outdoor environments. Simulation results demonstrate that the number of multipath proportionally affects key generation rate and key-mismatch probability. In comparison to the conventional method using received signal strength (RSS) as a common random source, our mechanism achieves better performance in terms of common secret bit generation. Simultaneously, security analysis indicates that the proposed scheme can still guarantee security even in the sparse outdoor physical environment free of many reflectors.

Compressive Sensing Radar 연구 동향

  • Choe, Jin-Ho
    • The Magazine of the IEIE
    • /
    • v.41 no.6
    • /
    • pp.18-26
    • /
    • 2014
  • 신호의 표현과 압축은 밀접하게 연관되어 있다. 만약 매우 효과적인 신호 표현 방식을 찾을 수 있다면 매우 높은 비율로 신호 압축이 가능하다. 또한 효과적인 신호 표현 방식을 통해 우수한 성능과 낮은 복잡도를 갖는 신호 추정 방식을 유도할 수도 있다. 효과적인 신호 표현 방식은 대상 신호 자체의 성질과 관련되어 있다. 영상 신호등 매우 일반적인 신호가 적절한 변환을 통해 산재된 신호(sparse signal)가 될 수 있음을 많은 연구를 통해 볼 수 있다. 이러한 사실이 compressive sensing(CS)의 기반이다. 즉 신호가 어떠한 변환을 통해 산재된 신호로 표현될 수 있다면 매우 적은 수의 샘플로 이러한 신호를 알아낼 수 있다는 것을 Donoho와 Candes 등이 보였고 이것이 가능한 다양한 조건에 등에 대해 연구되었다. CS는 신호 처리에 근본적인 문제인 효과적인 신호 표현 방식에 직접 연관되어 매우 다양한 분야에 적용될 수 있다. 이 논문에서 CS의 기본적인 개념을 소개한 후 CS가 레이더 신호 처리에 어떻게 도움이 될 수 있는지 살펴본다.

  • PDF

Determination of Microwave Dielectric Properties of Grain by Free Space Transmission Method (자유공간 전송방법을 이용한 마이크로파 유전특성연구)

  • 김종헌;김기복;노상하
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.233-235
    • /
    • 1997
  • A free sparse transmission method using X-band standard gain horn antenna is applied to measure the attenuation and phase shift of microwave signal through the wetted grain such as rough rice, brown rice and barley. The moisture content of grain varied from 11 to 25% based on its wetted condition. The dielectric constant and loss factor, which depend on the moisture content of the wetted grain are obtained from the measured attenuation and phase shift by vector network analyzer. The measured values of dielectric constants as a function of moisture density are compared with values of those obtained using the predicted model for estimating dielectric constants of grain.

  • PDF

A Signal Separation Method Based on Sparsity Estimation of Source Signals and Non-negative Matrix Factorization (음원 희소성 추정 및 비음수 행렬 인수분해 기반 신호분리 기법)

  • Hong, Serin;Nam, Siyeon;Yun, Deokgyu;Choi, Seung Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.11a
    • /
    • pp.202-203
    • /
    • 2017
  • 비음수 행렬 인수분해(Non-negative Matrix Factorization, NMF)의 신호분리 성능을 개선하기 위해 희소조건을 인가한 방법이 희소 비음수 행렬 인수분해 알고리즘(Sparse NMF, SNMF)이다. 기존의 SNMF 알고리즘은 개별 음원의 희소성을 고려하지 않고 임의로 결정한 희소 조건을 사용한다. 본 논문에서는 음원의 특성에 따른 희소성을 추정하고 이를 SNMF 학습알고리즘에 적용하는 새로운 신호분리 기법을 제안한다. 혼합 신호에서의 잡음제거 실험을 통해, 제안한 방법이 기존의 NMF와 SNMF에 비해 성능이 더 우수함을 보였다.

  • PDF

Deterministic Bipolar Compressed Sensing Matrices from Binary Sequence Family

  • Lu, Cunbo;Chen, Wengu;Xu, Haibo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2497-2517
    • /
    • 2020
  • For compressed sensing (CS) applications, it is significant to construct deterministic measurement matrices with good practical features, including good sensing performance, low memory cost, low computational complexity and easy hardware implementation. In this paper, a deterministic construction method of bipolar measurement matrices is presented based on binary sequence family (BSF). This method is of interest to be applied for sparse signal restore and image block CS. Coherence is an important tool to describe and compare the performance of various sensing matrices. Lower coherence implies higher reconstruction accuracy. The coherence of proposed measurement matrices is analyzed and derived to be smaller than the corresponding Gaussian and Bernoulli random matrices. Simulation experiments show that the proposed matrices outperform the corresponding Gaussian, Bernoulli, binary and chaotic bipolar matrices in reconstruction accuracy. Meanwhile, the proposed matrices can reduce the reconstruction time compared with their Gaussian counterpart. Moreover, the proposed matrices are very efficient for sensing performance, memory, complexity and hardware realization, which is beneficial to practical CS.

Reduced Complexity Signal Detection for OFDM Systems with Transmit Diversity

  • Kim, Jae-Kwon;Heath Jr. Robert W.;Powers Edward J.
    • Journal of Communications and Networks
    • /
    • v.9 no.1
    • /
    • pp.75-83
    • /
    • 2007
  • Orthogonal frequency division multiplexing (OFDM) systems with multiple transmit antennas can exploit space-time block coding on each subchannel for reliable data transmission. Spacetime coded OFDM systems, however, are very sensitive to time variant channels because the channels need to be static over multiple OFDM symbol periods. In this paper, we propose to mitigate the channel variations in the frequency domain using a linear filter in the frequency domain that exploits the sparse structure of the system matrix in the frequency domain. Our approach has reduced complexity compared with alternative approaches based on time domain block-linear filters. Simulation results demonstrate that our proposed frequency domain block-linear filter reduces computational complexity by more than a factor of ten at the cost of small performance degradation, compared with a time domain block-linear filter.

Implementation of WCDMA Air Protocol Analyzer with An Effective Equalizer Design using Characteristic of Sparse Matrix (희소 행렬의 특성을 이용하여 효율적인 등화기 설계법이 적용된 WCDMA 무선 신호 분석기 구현)

  • Shin, Chang Eui;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.1
    • /
    • pp.111-118
    • /
    • 2013
  • This paper presents implementation of Air protocol analyzer and physical layer design algorithm. The analyzer is a measurement system providing real-time analysis of wireless signals between User Equipment (UE) and Node-B. The implemented system proposed in this paper consists of Digital Signal Processors (DSPs) and Field Programmable Gate Arrays (FPGAs). The waveform of Wideband Code Division Multiple Access (WCDMA) has been selected for verification of the proposed system. We designed the analyzer using equalizer algorithm and rake-receiver algorithm. Among various algorithms of designing the equalizer, we have chosen Linear Minimum Mean Square Error (LMMSE) equalizer that uses the inverse of channel matrix. Since the LMMSE equalizer uses the inverse channel matrix, it suffers from a large amount of computational load, while it outperforms most conventional equalizers. In this paper, we introduce an efficient procedure of reducing the computational load required by LMMSE equalizer-based receiver.

다중채널 압축센싱

  • Kim, Jong-Min;Lee, Ok-Gyun;Ye, Jong-Cheol
    • The Magazine of the IEIE
    • /
    • v.38 no.1
    • /
    • pp.44-49
    • /
    • 2011
  • 다중채널 압축센싱(multi-channel compressive sensing) 문제는 0이 아닌 성분이 공통된 위치에 분포하는 벡터들을 복원하는 방법을 다루는 문제이며 레이다의 도착방향 추정 문제, 역산란 문제, 산란광 단층촬영과 같은 많은 실용적인 문제에 응용될 수 있다. 압축 센싱 문제는 성긴(sparse) 속성을 갖는 벡터를 상당히 높은 확률로 복원시킬 수 있음이 밝혀져 있다. 이로 인해 기존의 압축 센싱 방법이 다중채널 압축센싱에서도 많이 활용되어 왔으며, 측정 벡터의 개수가 적을 때에도 높은 확률로 입력 신호를 복원할 수 있다. 그러나, 측정 벡터의 개수가 많아질수록, 기존의 압축센싱 알고리즘을 이용했을 때의 성능은 복수신호분리 (MUSIC) 알고리즘과 같이 배열신호처리(array signal processing)에서 활용되는 방법을 적용했을 때보다 더 나쁜 특성을 보인다. 이러한 기존 방법의 문제점으로 인해 우리는 새로운 다중채널 압축센싱 알고리즘을 제시하고자 하며, 이는 기존의 압축센싱 이론과 배열 신호처리 알고리즘을 개별적으로 적용할 때 가지는 한계를 극복할 수 있게 해준다.

  • PDF