• Title/Summary/Keyword: sparse

Search Result 1,160, Processing Time 0.031 seconds

REORDERING SCHEME OF SPARSE MATRIX. Sparse 행렬의 Reordering방법에 대한 연구

  • 유기영
    • Communications of the Korean Institute of Information Scientists and Engineers
    • /
    • v.5 no.2
    • /
    • pp.85-89
    • /
    • 1987
  • The large sparse matrix problems arise in many applications areas, such as structural analysis, network analysis. In dealing with such sparse systems proper preprogramming techniques such as permuting rows and columns simultaneously, will be needed in order to reduce the number of arithmetic operations and storage spaces.

SPARSE ORTHOGONAL MATRICES BY WEAVING

  • Cheon, Gi-Sang
    • Korean Journal of Mathematics
    • /
    • v.7 no.1
    • /
    • pp.61-69
    • /
    • 1999
  • We determine sparse orthogonal matrices of order $n$ which is fully indecomposable by weaving.

  • PDF

Application of the CS-based Sparse Volterra Filter to the Super-RENS Disc Channel Modeling (Super-RENS 디스크 채널 모델링에서 CS-기반 Sparse Volterra 필터의 적용)

  • Moon, Woo-Sik;Park, Se-Hwang;Im, Sung-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.5
    • /
    • pp.59-65
    • /
    • 2012
  • In this paper, we investigate the compressed sensing (CS) algorithms for modeling a super-resolution near-field structure (super-RENS) disc system with a sparse Volterra filter. It is well known that the super-RENS disc system has severe nonlinear inter-symbol interference (ISI). A nonlinear system with memory can be well described with the Volterra series. Furthermore, CS can restore sparse or compressed signals from measurements. For these reasons, we employ the CS algorithms to estimate a sparse super-RENS read-out channel. The evaluation results show that the CS algorithms can efficiently construct a sparse Volterra model for the super-RENS read-out channel.

X-ray Absorptiometry Image Enhancement using Sparse Representation (Sparse 표현을 이용한 X선 흡수 영상 개선)

  • Kim, Hyungil;Eom, Wonyong;Ro, Yong Man
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.10
    • /
    • pp.1205-1211
    • /
    • 2012
  • Recently, the evaluating method of the bone mineral density (BMD) in X-ray absorptiometry image has been studied for the early diagnosis of osteoporosis which is known as a metabolic disease. The BMD, in general, is evaluated by calculating pixel intensity in the bone segmented regions. Accurate bone region extraction is extremely crucial for the BMD evaluation. So, a X-Ray image enhancement is needed to get precise bone segmentation. In this paper, we propose an image enhancement method of X-ray image having multiple noise based sparse representation. To evaluate the performance of proposed method, we employ the contrast to noise ratio (CNR) metric and cut-view graphs visualizing image enhancement performance. Experimental results show that the proposed method outperforms the BayesShrink noise reduction methods and the previous noise reduction method in sparse representation with general noise model.

A Study on the Formulation of High Resolution Range Profile and ISAR Image Using Sparse Recovery Algorithm (Sparse 복원 알고리즘을 이용한 HRRP 및 ISAR 영상 형성에 관한 연구)

  • Bae, Ji-Hoon;Kim, Kyung-Tae;Yang, Eun-Jung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.467-475
    • /
    • 2014
  • In this paper, we introduce a sparse recovery algorithm applied to a radar signal model, based on the compressive sensing(CS), for the formulation of the radar signatures, such as high-resolution range profile(HRRP) and ISAR(Inverse Synthetic Aperture Radar) image. When there exits missing data in observed RCS data samples, we cannot obtain correct high-resolution radar signatures with the traditional IDFT(Inverse Discrete Fourier Transform) method. However, high-resolution radar signatures using the sparse recovery algorithm can be successfully recovered in the presence of data missing and qualities of the recovered radar signatures are nearly comparable to those of radar signatures using a complete RCS data without missing data. Therefore, the results show that the sparse recovery algorithm rather than the DFT method can be suitably applied for the reconstruction of high-resolution radar signatures, although we collect incomplete RCS data due to unwanted interferences or jamming signals.

Hyperspectral Image Classification via Joint Sparse representation of Multi-layer Superpixles

  • Sima, Haifeng;Mi, Aizhong;Han, Xue;Du, Shouheng;Wang, Zhiheng;Wang, Jianfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.5015-5038
    • /
    • 2018
  • In this paper, a novel spectral-spatial joint sparse representation algorithm for hyperspectral image classification is proposed based on multi-layer superpixels in various scales. Superpixels of various scales can provide complete yet redundant correlated information of the class attribute for test pixels. Therefore, we design a joint sparse model for a test pixel by sampling similar pixels from its corresponding superpixels combinations. Firstly, multi-layer superpixels are extracted on the false color image of the HSI data by principal components analysis model. Secondly, a group of discriminative sampling pixels are exploited as reconstruction matrix of test pixel which can be jointly represented by the structured dictionary and recovered sparse coefficients. Thirdly, the orthogonal matching pursuit strategy is employed for estimating sparse vector for the test pixel. In each iteration, the approximation can be computed from the dictionary and corresponding sparse vector. Finally, the class label of test pixel can be directly determined with minimum reconstruction error between the reconstruction matrix and its approximation. The advantages of this algorithm lie in the development of complete neighborhood and homogeneous pixels to share a common sparsity pattern, and it is able to achieve more flexible joint sparse coding of spectral-spatial information. Experimental results on three real hyperspectral datasets show that the proposed joint sparse model can achieve better performance than a series of excellent sparse classification methods and superpixels-based classification methods.

DATA MINING AND PREDICTION OF SAI TYPE MATRIX PRECONDITIONER

  • Kim, Sang-Bae;Xu, Shuting;Zhang, Jun
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.351-361
    • /
    • 2010
  • The solution of large sparse linear systems is one of the most important problems in large scale scientific computing. Among the many methods developed, the preconditioned Krylov subspace methods are considered the preferred methods. Selecting a suitable preconditioner with appropriate parameters for a specific sparse linear system presents a challenging task for many application scientists and engineers who have little knowledge of preconditioned iterative methods. The prediction of ILU type preconditioners was considered in [27] where support vector machine(SVM), as a data mining technique, is used to classify large sparse linear systems and predict best preconditioners. In this paper, we apply the data mining approach to the sparse approximate inverse(SAI) type preconditioners to find some parameters with which the preconditioned Krylov subspace method on the linear systems shows best performance.

Object Tracking based on Relaxed Inverse Sparse Representation

  • Zhang, Junxing;Bo, Chunjuan;Tang, Jianbo;Song, Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3655-3671
    • /
    • 2015
  • In this paper, we develop a novel object tracking method based on sparse representation. First, we propose a relaxed sparse representation model, based on which the tracking problem is casted as an inverse sparse representation process. In this process, the target template is able to be sparsely approximated by all candidate samples. Second, we present an objective function that combines the sparse representation process of different fragments, the relaxed representation scheme and a weight reference prior. Based on some propositions, the proposed objective function can be solved by using an iteration algorithm. In addition, we design a tracking framework based on the proposed representation model and a simple online update manner. Finally, numerous experiments are conducted on some challenging sequences to compare our tracking method with some state-of-the-art ones. Both qualitative and quantitative results demonstrate that the proposed tracking method performs better than other competing algorithms.

A Study on Modeling of Sparse Tensor Accelerators (Sparse Tensor 가속기의 모델링에 관한 연구 동향)

  • Whoi Ree, Ha;Yunheung, Paek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.336-338
    • /
    • 2023
  • Sparse한 데이터가 딥러닝에 자주 사용됨에 따라 다양한 sparse 텐서 가속기들이 연구되고 있다. 하지만 이런 sparse 텐서 가속기들은 특수 하드웨어 모듈을 채용하고 있고, 다양한 구조로 되어 있다. 또한, 가속기들의 효율성이 데이터의 sparsity에 따라 달라지기 때문에 서로의 직접적인 비교도 힘들다. 따라서 이 문제들을 해결하기 위해, sparse 텐서 가속기들을 모델링하여 서로를 비교하려는 연구들이 존재하며, 이 논문에서는 이에 관한 연구 동향을 서술하였다.

An improved kernel principal component analysis based on sparse representation for face recognition

  • Huang, Wei;Wang, Xiaohui;Zhu, Yinghui;Zheng, Gengzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2709-2729
    • /
    • 2016
  • Representation based classification, kernel method and sparse representation have received much attention in the field of face recognition. In this paper, we proposed an improved kernel principal component analysis method based on sparse representation to improve the accuracy and robustness for face recognition. First, the distances between the test sample and all training samples in kernel space are estimated based on collaborative representation. Second, S training samples with the smallest distances are selected, and Kernel Principal Component Analysis (KPCA) is used to extract the features that are exploited for classification. The proposed method implements the sparse representation under ℓ2 regularization and performs feature extraction twice to improve the robustness. Also, we investigate the relationship between the accuracy and the sparseness coefficient, the relationship between the accuracy and the dimensionality respectively. The comparative experiments are conducted on the ORL, the GT and the UMIST face database. The experimental results show that the proposed method is more effective and robust than several state-of-the-art methods including Sparse Representation based Classification (SRC), Collaborative Representation based Classification (CRC), KCRC and Two Phase Test samples Sparse Representation (TPTSR).