• Title/Summary/Keyword: spark-plasma-sintering

Search Result 409, Processing Time 0.044 seconds

A Study of Thermoelectric Material for Waste Heat Recovery (배열회수 발전용 열전소재 기초연구)

  • Kim, Ho-Young;Kim, Cham
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.175-180
    • /
    • 2008
  • Thermoelectric materials convert temperature difference to electric power for power generation and vice versa for refrigeration. Recent advances in enhancing the thermoelectric figure-of-merit shed light on efficient power generation from the waste heat available in industries and vehicles. Nanoscale phenomena with both nanoscale constituent-embedded bulk samples and nanoscale materials proving enhanced thermoelectric performance have been widely reviewed. Bulk materials of crystal-orientation and nano-structured particle embedding seem to promise a higher thermoelectric figure-of-merit and an effective power generation application. As a preliminary study, Si-Ge nanocomposite was prepared with spark plasma sintering method and its properties were examined.

  • PDF

Study of anti wear resistance of Mo-Cu-N coatings deposited by reactive magnetron sputtering process with single alloying target (윤활조건에 따른 Mo-Cu-N 코팅의 마모특성에 관한 연구)

  • Mun, Gyeong-Il;Park, Hyeon-Jun;Lee, Han-Chan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.95.1-95.1
    • /
    • 2017
  • In this study, it has been tried to make the single Mo-Cu alloying targets with the Cu showing the best surface hardness that was determined by investigation on the coatings with the double target process. The single alloying targets were prepared by powder metallurgy methods such as mechanical alloying and spark plasma sintering. The nanocomposite coatings were prepared by reactive magnetron sputtering process with the single alloying targets in $Ar+N_2$ atmosphere. The microstructure changes of the Mo-Cu-N coatings with diverse Cu contents were investigated by using XRD, SEM and EDS. The mechanical properties of the coatings were evaluated by using nano-indentor, scratch test, and ball on disc methods. Especially, the coated samples were tested by using various lubricating oil to compare the property of anti wear-resistance. In this study, the nano-composite MoN-Cu coatings prepared using an alloying target was eventually compared with the coatings from the multiple targets.

  • PDF

Powder Metallurgy Process in Bulk Amorphous Alloys (벌크 아몰퍼스 소재의 분말야금 공정기술 동향)

  • Kim, Hwi-Jun;Bae, Jung-Chan;Kim, Do-Hyang
    • Journal of Powder Materials
    • /
    • v.13 no.6 s.59
    • /
    • pp.387-395
    • /
    • 2006
  • 본고에서는 고유한 원자구조에 기인한 우수한 특성으로 인해 구조재료 및 기능재료로서 그 활용이 기대되고 있는 벌크 아몰퍼스 소재에 있어 온간압출, 온간압연, 방전 플라즈마 소결(Spark Plasma Sintering)등 과냉각액체온도구간에서의 점성유동을 이용한 고화성형 공정의 최근 기술동향에 대해 간략히 소개했다.

Application of Pseud-superplastic PM Process to Ti-Al Intermetallic Compound for MEMS Parts

  • Miyano, Naoki;Kumagai, Yusuke;Yoshimoto, Masayoshi;Nishimura, Yuta;Tanaka, Shigeo;Ameyama, Kei
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1292-1293
    • /
    • 2006
  • A non-equilibrium powder metallurgy processing such as an MA/SPS (Mechanical Alloying / Spark Plasma Sintering) process is examined in a Ti-48moll%Al. TiAl intermetallic compound is a potential light-weight/high-temperature structural material. One of the major problems, however, limiting the practical use of the material is its poor workability. From this point, the powder metallurgy (PM) processing route has been attractive alternative of the conventional processing for such material The MA/SPS process is able to apply to a LIGA process. Optimization of the pseudo-superplasticity enables to fabricate micro-parts made of fine grained ceramics composites of TiAl by the LIGA process.

  • PDF

A study on the effect of Cu amount thin films prepared by magnetron sputtering with Mo-Cu single alloying target (Mo-Cu 단일 합금타겟을 이용하여 마그네트론 스퍼터링법으로 제작한 박막의 Cu 함량에 따른 연구)

  • Lee, Han-Chan;Sin, Baek-Gyun;Mun, Gyeong-Il
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.73-74
    • /
    • 2015
  • 본 연구에서는 상호간의 고용도가 없는 Mo, Cu 재료의 합금화가 용이하도록 기계적 합금화법(Mechanical Alloying)을 이용하여 Mo-Cu 합금분말을 제조하였고, 준안정상태의 구조의 유지가 가능한 방전 플라즈마 소결법(Spark Plasma Sintering)을 이용하여 합금타겟을 제작하였다. Mo-Cu 박막을 제작하기 위해서 합금타겟을 이용하였고 스퍼터링 공정을 진행하여 박막을 제작하였다. 그 결과 Mo-10wt%Cu 단일타겟을 이용하여 제작한 박막의 경우 Ar : N 분위기에서 27.7GPa 로 가장 높은 경도값을 가지는 것을 확인하였다. 또한 Mo-5wt%Cu 단일타겟을 이용하여 Ar : N 분위기에서 제작한 박막은 건식조건에서의 마찰계수값이 0.69 로 가장 낮은 것을 확인할 수 있었으며 윤활조건(GF4)에서는 Mo-10wt%Cu 단일타겟을 이용하여 Ar : N 분위기에서 제작한 박막이 0.56 으로 가장 낮았다.

  • PDF

The Development of an Electroconductive SiC-ZrB2 Composite through Spark Plasma Sintering under Argon Atmosphere

  • Lee, Jung-Hoon;Ju, Jin-Young;Kim, Cheol-Ho;Park, Jin-Hyoung;Lee, Hee-Seung;Shin, Yong-Deok
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.342-351
    • /
    • 2010
  • The SiC-$ZrB_2$ composites were fabricated by combining 30, 35, 40, 45 and 50 vol. % of zirconium diboride ($ZrB_2$) powders with silicon carbide (SiC) matrix. The SiC-$ZrB_2$ composites and the sintered compacts were produced through spark plasma sintering (SPS) under argon atmosphere, and its physical, electrical, and mechanical properties were examined. Also, the thermal image analysis of the SiC-$ZrB_2$ composites was examined. Reactions between $\beta$-SiC and $ZrB_2$ were not observed via x-ray diffraction (XRD) analysis. The apparent porosity of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$, SiC+45vol.%$ZrB_2$ and SiC+50vol.%$ZrB_2$ composites were 7.2546, 0.8920, 0.6038, 1.0981, and 10.0108%, respectively. The XRD phase analysis of the sintered compacts demonstrated a high phase of SiC and $ZrB_2$. Among the $SiC+ZrB_2$ composites, the SiC+50vol.%$ZrB_2$ composite had the lowest flexural strength, 290.54MPa, the other composites had more than 980MPa flexural strength except the SiC+30vol.%$ZrB_2$ composite; the SiC+40vol.%$ZrB_2$ composite had the highest flexural strength, 1011.34MPa, at room temperature. The electrical properties of the SiC-$ZrB_2$ composites had positive temperature coefficient resistance (PTCR). The V-I characteristics of the SiC-$ZrB_2$ composites had a linear shape in the temperature range from room to $500^{\circ}C$. The electrical resistivities of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$ SiC+45vol.%$ZrB_2$ and SiC+50vol.%$ZrB_2$ composites were $4.573\times10^{-3}$, $1.554\times10^{-3}$, $9.365\times10^{-4}$, $6.999\times10^{-4}$, and $6.069\times10^{-4}\Omega{\cdot}cm$, respectively, at room temperature, and their resistance temperature coefficients were $1.896\times10^{-3}$, $3.064\times10^{-3}$, $3.169\times10^{-3}$, $3.097\times10^{-3}$, and $3.418\times10^{-3}/^{\circ}C$ in the temperature range from room to $500^{\circ}C$, respectively. Therefore, it is considered that among the sintered compacts the SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$ and SiC+45vol.%$ZrB_2$ composites containing the most outstanding mechanical properties as well as PTCR and V-I characteristics can be used as an energy friendly ceramic heater or ohmic-contact electrode material through SPS.

Fabrication and densification of magnetic α-Fe/Al2O3 nanocomposite by mechanical alloying (기계적합금화에 의한 α-Fe/Al2O3 자성 나노복합재료의 제조 및 치밀화)

  • Lee, Chung-Hyo;Kim, Han-Woong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.314-319
    • /
    • 2013
  • Fabrication of nanocomposite material for the $Fe_2O_3-Al$ system by mechanical alloying (MA) has been investigated at room temperature. It is found that ${\alpha}-Fe/Al_2O_3$ nanocomposite powders in which $Al_2O_3$ is dispersed in ${\alpha}-Fe$ matrix are obtained by mechanical alloying of $Fe_2O_3$ with Al for 5 hours. The change in magnetization and coercivity also reflects the details of the solid state reduction process of hematite by pure metal of Al during mechanical alloying. Densification of the MA powders was performed in a spark plasma sintering (SPS) machine using graphite dies at $1000^{\circ}C$ and $1100^{\circ}C$ under 60 MPa. Shrinkage change after SPS of MA'ed sample for 5 hrs was significant above $700^{\circ}C$ and gradually increased with increasing temperature up to $1100^{\circ}C$. X-ray diffraction result shows that the average grain size of ${\alpha}-Fe$ in ${\alpha}-Fe/Al_2O_3$ nanocomposite sintered at $1100^{\circ}C$ is in the range of 180 nm. It can be also seen that the coercivity (Hc) of SPS sample sintered at $1000^{\circ}C$ is still high value of 88 Oe, suggesting that the grain growth of magnetic ${\alpha}-Fe$ phase during SPS process tend to be suppressed.

Synthesis and characterization of soft magnetic composite in Fe2O3-Mg system by mechanical alloying (기계적합금화에 의한 Fe2O3-Mg계 연자성 콤포지트의 합성 및 평가)

  • Lee, Chung-Hyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.245-251
    • /
    • 2015
  • We have applied mechanical alloying (MA) to produce soft magnetic composite material using a mixture of elemental $Fe_2O_3$-Mg powders. An optimal milling and heat treatment conditions to obtain soft magnetic ${\alpha}$-Fe/MgO composite with fine microstructure were investigated by X-ray diffraction, differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM) measurement. It is found that ${\alpha}$-Fe/MgO composite powders in which MgO is dispersed in ${\alpha}$-Fe matrix are obtained by MA of $Fe_2O_3$ with Mg for 30 min. The saturation magnetization of ball-milled powders increases with increasing milling time and reaches to a maximum value of 69.5 emu/g after 5 h MA. The magnetic hardening due to the reduction of the ${\alpha}$-Fe grain size by MA was also observed. Densification of the MA powders was performed in a spark plasma sintering (SPS) machine at $800{\sim}1000^{\circ}C$ under 60 MPa. X-ray diffraction result shows that the average grain size of ${\alpha}$-Fe in ${\alpha}$-Fe/MgO nanocomposite sintered at $800^{\circ}C$ is in the range of 110 nm.