• Title/Summary/Keyword: spark-plasma-sintering

Search Result 409, Processing Time 0.03 seconds

Microstructure and Electric Contact Properties of Spark Plasma Sintered Ta-Cu Composite (방전플라즈마 소결법으로 제조된 Ta-Cu의 미세조직 및 전기접점 특성)

  • Ju, Won;Kim, Young Do;Sim, Jae Jin;Choi, Sang-Hoon;Hyun, Soong Keun;Lim, Kyoung Mook;Park, Kyoung-Tae
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.377-383
    • /
    • 2017
  • Microstructure, electric, and thermal properties of the Ta-Cu composite is evaluated for the application in electric contact materials. This material has the potential to be used in a medium for a high current range of current conditions, replacing Ag-MO, W, and WC containing materials. The optimized SPS process conditions are a temperature of $900^{\circ}C$ for a 5 min holding time under a 30 MPa mechanical pressure. Comparative research is carried out for the calculated and actual values of the thermal and electric properties. The range of actual thermal and electric properties of the Ta-Cu composite are 50~300 W/mk and 10~90 %IACS, respectively, according to the compositional change of the 90 to 10 wt% Ta-Cu system. The results related to the electric contact properties, suggest that less than 50 wt% of Ta compositions are possible in applications of electric contact materials.

Interfacial Reaction between Spark Plasma Sintered High-entropy Alloys and Cast Aluminum (고엔트로피합금 분말야금재와 알루미늄 주조재 사이의 계면 반응 연구)

  • Kim, Min-Sang;Son, Hansol;Jung, Cha Hee;Han, Juyeon;Kim, Jung Joon;Kim, Young-Do;Choi, Hyunjoo;Kim, Se Hoon
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.213-218
    • /
    • 2022
  • This study investigates the interfacial reaction between powder-metallurgy high-entropy alloys (HEAs) and cast aluminum. HEA pellets are produced by the spark plasma sintering of Al0.5CoCrCu0.5FeNi HEA powder. These sintered pellets are then placed in molten Al, and the phases formed at the interface between the HEA pellets and cast Al are analyzed. First, Kirkendall voids are observed due to the difference in the diffusion rates between the liquid Al and solid HEA phases. In addition, although Co, Fe, and Ni atoms, which have low mixing enthalpies with Al, diffuse toward Al, Cu atoms, which have a high mixing enthalpy with Al, tend to form Al-Cu intermetallic compounds. These results provide guidelines for designing Al matrix composites containing high-entropy phases.

Enhancement of Thermoelectric Performance in Spark Plasma Sintered p-Type Bi0.5Sb1.5Te3.0 Compound via Hot Isostatic Pressing (HIP) Induced Reduction of Lattice Thermal Conductivity (열간등방가압 공정을 통한 P형 Bi0.5Sb1.5Te3.0 소결체의 격자 열전도도 감소 및 열전 특성 향상)

  • Soo-Ho Jung;Ye Jin Woo;Kyung Tae Kim;Seungki Jo
    • Journal of Powder Materials
    • /
    • v.30 no.2
    • /
    • pp.123-129
    • /
    • 2023
  • High-temperature and high-pressure post-processing applied to sintered thermoelectric materials can create nanoscale defects, thereby enhancing their thermoelectric performance. Here, we investigate the effect of hot isostatic pressing (HIP) as a post-processing treatment on the thermoelectric properties of p-type Bi0.5Sb1.5Te3.0 compounds sintered via spark plasma sintering. The sample post-processed via HIP maintains its electronic transport properties despite the reduced microstructural texturing. Moreover, lattice thermal conductivity is significantly reduced owing to activated phonon scattering, which can be attributed to the nanoscale defects created during HIP, resulting in an ~18% increase in peak zT value, which reaches ~1.43 at 100℃. This study validates that HIP enhances the thermoelectric performance by controlling the thermal transport without having any detrimental effects on the electronic transport properties of thermoelectric materials.

Austenite Stability of Nanocrystalline FeMnNiC Alloy (나노결정 FeMnNiC합금의 오스테나이트 안정성)

  • Oh, Seung-Jin;Jeon, Junhyub;Shon, In-Jin;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.389-394
    • /
    • 2019
  • In the present study, we have investigated the effect of sintering process conditions on the stability of the austenite phase in the nanocrystalline Fe-5wt.%Mn-0.2wt.%C alloy. The stability and volume fraction of the austenite phase are the key factors that determine the mechanical properties of FeMnC alloys, because strain-induced austenite-martensite transformation occurs under the application of an external stress at room temperature. Nanocrystalline Fe-5wt.%Mn-0.2wt.%C samples are fabricated using the spark plasma sintering method. The stability of the austenite phase in the sintered samples is evaluated by X-ray diffraction analysis and hardness test. The volume fraction of austenite at room temperature increases as the sample is held for 10 min at the sintering temperature, because of carbon diffusion in austenite. Moreover, water quenching effectively prevents the formation of cementite during cooling, resulting in a higher volume fraction of austenite. Furthermore, it is found that the hardness is influenced by both the austenite carbon content and volume fraction.

Crystallization behavior of Cu-base bulk metallic glass in supercooled liquid region during compression and tension (과냉각 액상구간에서 압축.인장시 Cu기 비정질 합금의 결정화 거동)

  • Park, E.S.;Kim, S.H.;Huh, M.Y.;Kim, H.W.;Bae, J.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.215-217
    • /
    • 2008
  • Crystallization behavior of the bulk metallic glass (BMG) during compression and tension was studied in the supercooled liquid region (SLR). Rod samples of the BMG alloy were produced by consolidating gas atomized powders of $Cu_{54}Zr_{22}Ti_{18}Ni_6$ using spark plasma sintering. The crystallization behavior in these samples was examined by tackling changes in thermal property during heating the samples in DSC. The present BMG alloy was firstly decomposed and then crystallized during annealing in the SLR. The phase decomposition from the original amorphous phase was retarded by the compressive stress, while it was accelerated by the tensile stress.

  • PDF

Development of Low Voltage. High Current Thyristor Converter for Spark Plasma Sintering (방전 플라즈마 소결접합용 저전압, 대전류 사이리스터 정류기 개발)

  • Lee, Eul-Jae;Choi, Jung-Soo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1030-1032
    • /
    • 2002
  • 본 논문은 새로운 개념의 방전 플라즈마 소결 접합장비에 적용된 출력펄스 가변형 저전압, 대전류 사이리스터 정류기의 개발에 대하여 설명하고 있다. 6펄스 형태로 개발된 대용량 출력펄스 가변형 정류기는 공냉식으로 제작되어 기존의 대용량 정류기에서 적용한 수냉식보다 구조가 단순하며 최대 l1600A의 출력을 펄스 단위로 반복적으로 차단 및 전류하는 것이 가능하도록 설계되었다. 전류분배를 위한 버스바의 형태는 기구적인 설계만으로 간단히 대전류를 분배할 수 있도록 하였으며 디지털 연산에 의한 PLL 방식으로 입력 전압의 동기가 필요하지 않다. 시뮬레이션과 실물부하를 연결한 실험을 통해 제안한 방법 및 성능의 우수성을 조사하였다.

  • PDF

Reactive Synthesis of ZrB2-based Ultra High Temperature Ceramics

  • Liu, Hai-Tao;Zhang, Guo-Jun
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.308-317
    • /
    • 2012
  • Reactive processing, such as reactive hot pressing (RHP) and reactive spark plasma sintering (R-SPS), is effective densification method to prepare $ZrB_2$-based ultra high temperature ceramics (UHTCs). The present paper reviewed some typical reactive processing of $ZrB_2$-based UHTCs. All the reactions from the starting materials in the reactive processing are thermodynamically favorable, which generate enough energy and driving force for the densification of the final products under a relatively low temperature. Besides, compared with non-reactive processing, anisotropic $ZrB_2$ grains, such as $ZrB_2$ platelets, can only be obtained in the reactive processing, resulting in an improvement of the mechanical properties.

Effects of Phase Fraction and Metallic Glass-Diamond Size Ratio on the Densification of Metallic Glass/Diamond Composite (비정질/다이아몬드 복합재료에서 상분율과 비정질-다이아몬드 입자 크기 비가 성형특성에 미치는 영향)

  • Shin, Su-Min;Kim, Taek-Soo;Kang, Seung-Koo;Kim, Jeong-Gon
    • Journal of Powder Materials
    • /
    • v.16 no.3
    • /
    • pp.173-179
    • /
    • 2009
  • In the present study, Zr-base metallic glass(MG)/diamond composites are fabricated using a combination of gas-atomization and spark plasma sintering (SPS). The densification behaviors of mixtures of soft MG and hard diamond powders during consolidation process are investigated. The influence of mixture characteristics on the densification is discussed and several mechanism explaining the influence of diamond particles on consolidation behaviour are proposed. The experimental results show that consolidation is enhanced with increasing diamond/Metallic Glass(MG) size ratio, while the diamond fraction is fixed.

Grain Boundary Protonic Conductivity in Highly Dense Nano-crystalline Y-doped BaZrO3

  • Park, Hee-Jung;Munir, Zuhair A.;Kim, Sang-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.71-74
    • /
    • 2010
  • We have investigated protonic conduction in highly dense (>98%) polycrystalline Y-doepd $BaZrO_3$ (BYZ) ceramic with an average grain size of ~85 nm. It is observed that the protonic conductivity across the grain boundaries in this nano-crystallilne BYZ (n-BYZ) is significantly higher than the microcrystalline counterpart. Such a remarkable enhancement in grain boundary conductivity results in high overall conductivity that may allow this chemically stable protonic conductor to serve as a solid electrolyte for low-temperature solid oxide fuel cell applications.

Fabrication Process and Mechanical Properties of Carbon Nanotube Reinforced Alumina Nanocomposites (탄소나노튜브 강화 알루미나 나노복합재료의 제조공정 및 기계적 특성)

  • Kim, Kyung-Tae;Cha, Seung-Il;Hong, Soon-Hyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.121-124
    • /
    • 2005
  • A novel process to fabricate carbon nanotube (CNT)/alumina nanocomposites, consisting of a molecular level mixing process and an in situ spark plasma sintering process, is proposed. The CNT/alumina nanocomposites fabricated by this proposed process show enhanced hardness due to a load transfer mechanism of the CNTs and increased fracture toughness arising from the bridging mechanism of CNTs during crack propagation

  • PDF