• Title/Summary/Keyword: spark test

Search Result 148, Processing Time 0.024 seconds

An Experimental Study on the Spray Behaviors of Swirl and Slit Injector to Direct Injection Spark Injection Engine (DISI 엔진용 스월인젝터와 슬릿인젝터의 분무 거동에 관한 연구)

  • Lee Changhee;Lee Kihyung;Choi Youngjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.19-27
    • /
    • 2005
  • The spray characteristics of DISI injector has a great role in engine efficiency and emission. Thus, many researchers have been studied to investigate the spray characteristics of hollow cone type and slit type injector which are used in DISI engine. In this study, we tried to provide spray parameters which effect on the spray characteristics such as injection pressure, ambient pressure and ambient temperature. In addition, we calculated $t_b\;and\;t_c$ to investigate the break up mechanism of test injectors and also obtained $C_v$ to evaluate the spray characteristics. From this study, As the ambient pressure increases in case of slit injector, $C_v$ decreases.

A measurement of piston surface temperature by using instantaneous temperature measuring probe (순간온도 계측 프로브를 사용한 피스턴 표면 온도측정)

  • 이성열;이영조
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.60-66
    • /
    • 1990
  • In order to measure the piston surface temperature and heat flux, autors have developed the measuring system with an instantaneous temperature probe. Such the instantaneous temperature probes were embodied into the top of piston for measurement and L-link system, designed to fit the test engine, extracts the thermocouple wires from the piston outside of engine employing a mechanical linkage. Then the instantaneous surface temperature was measured to calculate the heat flux flowing into the top surface of piston in a spark ignition engine. As a result, the following phenomena have been obtained through the study. 1) It is found that the time response and durability of temperature probe with a thin film thickness 10um and mechanical linkage with thermocouple wire extraction is sufficient at this experiment. 2) For the quantitative effect of variation in engine speed, the temperature swing and heat flux on the top of piston increase with increasing the engine speed. 3) It is proved that the temperature swing and heat flux decrease with distance from spark plug.

  • PDF

A STUDY ON THE PERFORMANCE AND EMISSIONS CHARACTERISTICS OF SPARK IGNITION ENGINE FUELLED WITH ETHANOL GASOLINE BLENDED FUEL

  • Han, Sung Bin
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.170-174
    • /
    • 2014
  • This paper presents the influences of ethanol addition to gasoline on bench test a spark ignition engine performances and emissions characteristics. The use of ethanol gasoline blended fuels decrease the brake power and brake torque, and increases the brake specific fuel consumption (BSFC). Ethanol gasoline blended fuels show lower brake torque and brake power and higher BSFC than gasoline. When ethanol containing oxygen is blended with gasoline, the combustion of the engine becomes better and therefore CO emission is reduced. HC emissions decrease to some extent as ethanol added to gasoline increase, as the percentage of ethanol in the blends increased, NOx emission was decreased under various engine speeds.

A Study on Combustion and Characteristics of Exhaust Gas Properties for Combustion Chamber (연소실 형상에 따른 연소 및 배기가스 배출물 특성에 관한 연구)

  • 김대열;한영출;주신혁;박병완
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.66-73
    • /
    • 2004
  • This paper presents characteristics of combustion and exhaust gas properties according to variation of the combustion chamber for economy and emissions standards. In order to use combustion and exhaust gas properties data, it is necessary to build some data base, which use cylinder pressure sensor and emission tester. A feasibility and necessity of combustion pressure based cylinder spark timing control has been examined. So, this was obtained the coefficient of variation(COV) and the specific fuel consumption(sfc). Using the results of the test, the effects of the variable combustion chamber can be improved combustion stability and be reduced exhaust emission.

Improvement of Gasoline Engine Performance by Modifying the Engine Cooling System (엔진 냉각계 개선을 통한 가솔린엔진의 성능 향상)

  • 류택용;신승용;이은현;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.1-10
    • /
    • 1998
  • In this paper, we investigated the improvement of characteristics of knock, emission and fuel consumption rate by optimizing the location and size of water transfer holes in cylinder head gasket without change of engine water jacket design itself. The cooling system was modified in the direction of reducing the metal temperature in the head and increasing the metal temperature in the block. The optimization of water transfer holes in cylinder head gasket was obtained by "flow visualization test". The water transfer holes were concentrated in front side of the engine in order to reduce thermal boundary layer in the water jacket of No. 2 and No. 3 combustion changer in the cylinder head, which would have a large knock intensity, and increase thermal boundary layer in the water jacket of the cylinder block. When the modified coolant flow pattern was applied as proposed in this paper, the knock characteristic was improved. The spark timing was advanced up to 2$^{\circ}$ in low and middle speed range at a full load. In addition, HC emission at MBT was reduced by 5.2%, and the fuel consumption rate was decreased up to 1% in the driving condition of 2400 rpm and 250 KPa. However, since this coolant flow pattern mentioned in this paper might deteriorate the performance of vehicle cooling system due to the coolant flow rate reduction, a properly optimized point should be obtained. obtained.

  • PDF

Development of Lightning Current Generator and Technology for Generating the First Short Stroke Lightning Current Using a Crowbar Device (Crowbar 장치를 이용한 최초 단시간뇌격전류 발생기술 및 뇌격전류발생기 개발)

  • Eom, Ju-Hong;Lee, Tae-Hyung;Kwon, Ki-Ryang;Cho, Sung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.1
    • /
    • pp.93-100
    • /
    • 2011
  • This paper presents a technical study for the first short stroke lightning current generator using a crowbar device. The so-called crowbar-technology is most common to make 10/350[${\mu}s$] impulse currents with high amplitude, and the lightning current generator with crowbar device has an economic advantage than the nominal RLC current generator. But both the operating efficiency and the operating reliability of crowbar spark gap are very important to design the current generator. So, the peaking circuit which consists of small capacitors and a spark gap is applied. And the multi-step coil for controlling the circuit constant at the different test conditions is used. The presented test facility is designed to perform impulse tests with amplitudes up to 50[kA] of 10/350[${\mu}s$].

The Characteristic of Titanium Composites Including of Nano-sized TiNx for Stack Separator

  • Park, Sung-Bum;Ban, Tae-Ho;Woo, Heung-Sik;Kim, Sung-Jin
    • Journal of Powder Materials
    • /
    • v.17 no.2
    • /
    • pp.123-129
    • /
    • 2010
  • The fabrication of interconnect from titanium powders and $TiN_x$ powders is investigated. Corrosion-resistant titanium and $TiN_x$ are used as reinforcement in order to reveal high heat and corrosion resistance at the elevated temperature. We fabricated the plates for interconnect reinforced with $TiN_x$ by mixing titanium powders with 10 wt.% of nano-sized $TiN_x$. Spark Plasma Sintering (SPS) was chosen for the sintering of these composites. The plate made of titanium powders and $TiN_x$ powders demonstrates higher corrosion resistance than that of the plate of titanium powders alone. The physical properties of specimens were analyzed by performing hardness test and biaxial strength test. The electrochemical properties, such as corrosion resistance and hydrogen permeability at high temperature, were also investigated. The microstructures of the specimens were investigated by FESEM and profiles of chemical compositions were analyzed by EDX.

Equivalent three-phase synthetic making test for medium voltage circuit breaker of distribution system using DC power (직류전원을 이용한 배전급 차단기의 등가 3상 합성투입시험법)

  • Park, Byung-Rak;Jo, Man-Yong;Kim, Jin-Seok;Shin, Hee-Sang;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.7
    • /
    • pp.105-113
    • /
    • 2011
  • The study about three-phase synthetic making test using DC power has been performed in order to increase the making test capacity on Vacuum Circuit Breaker. And, it made possible to solve the limitations that short-circuit testing facilities can not fulfill the testing requirements of VCB exceeding three-phase 36[kV] 31.5[kA]. By using DC power and high speed spark-gap switch, this method made the equivalence with the pre-arc that occurred during the making process under the fault condition of power system. As results, KERI(Korea Electrotechnology Research Institute) could have capacity to carry out type test for VCB under three-phase 52[kV] 40[kV], which satisfies the IEC Standard.

A study on stabilized power source in intrinsic safety system (본질안전방폭시스템 전원의 안정화에 관한 연구)

  • Lee Chun-Ha;Lee Chang-Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.1 s.22
    • /
    • pp.18-24
    • /
    • 2004
  • This study issues the component's ratings when low powered do intrinsic safety instrumentations using in flammable atmospheres. Test of reverse bias of zener diode characteristics and ignition characteristics test for power source consist of zener diode and resistor have done using IEC spark test apparatus. With this test, the ratings for zener diode and resistor are calculated and the design method of intrinsically safe power supply system is reported.

  • PDF

Effect of Sintering Condition on Tensile Strength of Fe-based Non-equiatomic High Entropy Alloy (철계 비동일분율 고엔트로피 합금의 인장 강도에 미치는 소결 조건 영향)

  • Seo, Namhyuk;Jeon, Junhyub;Kim, Gwanghun;Park, Jungbin;Son, Seung Bae;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.221-226
    • /
    • 2021
  • We fabricate the non-equiatomic high-entropy alloy (NE-HEA) Fe49.5Mn30Co10Cr10C0.5 (at.%) using spark plasma sintering under various sintering conditions. Each elemental pure powder is milled by high-energy ball milling to prepare NE-HEA powder. The microstructure and mechanical properties of the sintered samples are investigated using various methods. We use the X-ray diffraction (XRD) method to investigate the microstructural characteristics. Quantitative phase analysis is performed by direct comparison of the XRD results. A tensile test is used to compare the mechanical properties of small samples. Next, electron backscatter diffraction analysis is performed to analyze the phase fraction, and the results are compared to those of XRD analysis. By combining different sintering durations and temperature conditions, we attempt to identify suitable spark plasma sintering conditions that yield mechanical properties comparable with previously reported values. The samples sintered at 900 and 1000℃ with no holding time have a tensile strength of over 1000 MPa.