• 제목/요약/키워드: spark ignition

검색결과 452건 처리시간 0.023초

4 행정 사이클 스파크 점화기관의 시뮬레이션에 관한 연구 (제1보) (Study on the Simulation of the 4-Stroke Cycle Spark Ignition Engines (First Paper))

  • 윤건식;우석근;서문진;신승한
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권6호
    • /
    • pp.1260-1271
    • /
    • 2001
  • The simulation program which predicts the gas behavior in a spark ignition engine has been developed and verified by the comparison with the experimental results foy the MPI engine, naturally aspirated and turbochared engines with a carburettor. First paper describes the calculations of the behavior of gas in the intake and exhaust system. The generalized method of characteristics including friction, heat transfer, area change and entropy gradients was used to analyse the pipe flow The constant-Pressure model was applied for the analysis of the flow through engine valved, and the constant-pressure perfect-mixing model was applied for the flow at manifold junction. The concept of the sudden area change was used for the muffler and catalytic convertor. Fer the plenum chamber in an MPI engine, constant-pressure model and constant-volume model were both examined. Through the comparison of predicted results with experiments, the simulation program was verified by showing good prediction of the behavior of IC engine qualitatively and quantitatively under wide range of operating conditions.

  • PDF

흡입 스월유동이 Sl기관의 희박연소에 미치는 영향 (The Effects of Intake Swirl Flow en Lean Combustion in an Sl Engine)

  • 정구섭;전충환;장영준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권6호
    • /
    • pp.1298-1307
    • /
    • 2001
  • Recently, the efforts to improve fuel economy and to reduce pollutant emission have become the main subject in the development of a gasoline engine. A lean combustion engine admitted as the best alternative is relatively lower fuel consumption rate and exhaust emissions. In this study, it is focused on intensifying intake flow field as one of methods to improve the performance of the lean combustion. First, three different types of suitable swirl control valve(SC7) with high swirl and tumble ratio are selected through steady flow experiment, being installed in a spark ignition engine. The relationship between lean misfire limit and torque was investigated with injection timing and spark ignition timing. Also, the effect of intensified swirl new on the combustion Stability and exhaust emissions was experimently examined by the measuring in-cylinder pressure and combustion variation. The results show that the engine with swirl control calve is superior to other conventional engine on the lean misfire limit, specific torque, combustion variation and emission, and the appropriate injection timing and spark ignition timing exist according to the type of swirl control valve.

  • PDF

가솔린 엔진에서 가솔린-암모니아 혼합 연료의 연소 및 배기 특성 (Combustion Characteristics and Exhaust Emissions in Spark-ignition Engine Using Gasoline-ammonia)

  • 유경현
    • 한국자동차공학회논문집
    • /
    • 제21권6호
    • /
    • pp.155-165
    • /
    • 2013
  • The effect of gaseous ammonia direct injection on the engine performance and exhaust emissions in gasoline-ammonia dual fueled spark-ignition engine was investigated in this study. Results show that based on the gasoline contribution engine power increases as the ammonia injection timing and duration is advanced and increased, respectively. However, as the initial amount of gasoline is increased the maximum power output contribution from ammonia is reduced. For gasoline-ammonia, the appropriate injection timing is found to range from 320 BTDC at low loads to 370 BTDC at high loads and the peak pressures are slightly lower than that for gasoline due to the slow flame speed of ammonia, resulting in the reduction of combustion efficiency. The brake specific energy consumption (BSEC) for gasoline-ammonia has little difference compared to the BSEC for gasoline only. Ammonia direct injection causes slight reduction of $CO_2$ and CO for all presented loads but significantly increases HC due to the low combustion efficiency of ammonia. Also, ammonia direct injection results in both increased ammonia and NOx in the exhaust due to formation of fuel NOx and ammonia slip.

스파크 점화기관의 노킹제어를 위한 퍼지제어기 개발 (The Fuzzy Controller for Spark Ignition Engine Knock Control)

  • 이재형;함윤영;장광수;전광민
    • 대한기계학회논문집A
    • /
    • 제21권2호
    • /
    • pp.223-231
    • /
    • 1997
  • A variety of approaches have been investigated for the application of spark-ignition engine knock control. The control method implemented, here as "Fuzzy Control", has the advantage of not requiring the knowledge of a mathematical model of the controlled object and is more robust and flexible than conventional approaches. Knock control in this study is performed using vibration signal which is measured with accelerometer attached to the cylinder block of a 1498cc four-cylinder spark-ignition engine. The experimental results obtained with this method are compared with those obtained with a knock interval controller and with those of a conventional controller. Those results illustrate better performance in torque than knock interval controller and conventional controller.ontroller.

저농도 바이오알코올 혼합 연료가 스파크 점화 엔진 차량의 연비 및 배출가스에 미치는 영향 (Influence of Low Level Bio-Alcohol Fuels on Fuel Economy and Emissions in Spark Ignition Engine Vehicles)

  • 차규섭;노수영
    • 한국수소및신에너지학회논문집
    • /
    • 제31권2호
    • /
    • pp.250-258
    • /
    • 2020
  • This study was conducted to analyze the impact of low level bio-alcohols that can be applied without modification of vehicles to improve air quality in Korea. The emissions and fuel economy of low level bio-alcohols mixed gasoline fuels of spark ignition vehicles, which are direct injection and port fuel injection, were studied in this paper. As a result of the evaluation, the particle number (PN) was reduced in all evaluation fuels compared to the sub octane gasoline without oxygen, but the correlation with the PN due to the increase in the oxygen content was not clear. In the CVS-75 mode, emitted CO tended to decrease compared to sub octane gasoline, but no significant correlation was found between NMHC, NOx and fuel economy. In addition, it was found that the aldehyde increased in the oxygenated fuel, and there was no difference in terms of the amount of aldehyde generated among a series of bio-alcohol mixed fuels.

천연가스 스파크점화 엔진 발전기에서의 에너지 손실 분석 (Analysis of Energy Losses in a Natural Gas Spark Ignition Engine for Power Generation)

  • 박현욱;이준순;오승묵;김창업;이용규;강건용
    • 한국분무공학회지
    • /
    • 제25권4호
    • /
    • pp.170-177
    • /
    • 2020
  • Stoichiometric combustion in spark ignition (SI) engines has an advantage of meeting future stringent emission regulations. However, the drawback of the combustion is a lower thermal efficiency than that of lean burn. In this study, energy losses in a natural gas stoichiometric SI engine generator were analyzed to establish a strategy for improving the generating efficiency (GE). The energy losses were investigated based on dynamometer and load bank experiments. As the intake manifold pressure increased in the dynamometer experiment, the brake thermal efficiency (BTE) increased mainly due to the reduction in the pumping and mechanical losses. In the load bank experiment, the generating power and GE increased with the increased intake manifold pressure. The generating power and GE were lower than the brake power and BTE due to the cooling fan power and the losses in the generator.

합성가스 스파크점화 과급 엔진에서 희박 연소를 통한 열효율 및 배기 개선 (Improvement of Thermal Efficiency and Emission by Lean Combustion in a Boosted Spark-Ignition Engine Fueled with Syngas)

  • 박현욱;이준순;나랑후 잠스랑;오승묵;김창업;이용규;강건용
    • 한국분무공학회지
    • /
    • 제26권1호
    • /
    • pp.40-48
    • /
    • 2021
  • Lean combustion was applied to improve the thermal efficiency and emission in a single-cylinder, spark-ignition engine fueled with syngas. Under naturally aspirated conditions, the lean combustion significantly improved the thermal efficiency compared to the stoichiometric combustion, mainly due to the reduction in heat transfer loss. Intake air boost was applied to compensate the low power output of the lean combustion. The gross indicated power of 24.8 kW was achieved by increasing the intake pressure up to 1.6 bar at excess air ratio of 2.2. The nitrogen oxides showed near zero level, but the carbon monoxide emission was significant.

고압축비 전기점화 천연가스 발전용 엔진에서 앳킨슨 사이클 적용을 통한 열효율 향상 (Improvement of Thermal Efficiency using Atkinson Cycle in a High-Compression Ratio, Spark-Ignition, Natural Gas Engine for Power Generation)

  • 이준순;박현욱;오승묵;김창업;이용규;강건용
    • 한국분무공학회지
    • /
    • 제28권2호
    • /
    • pp.55-61
    • /
    • 2023
  • Natural gas is a high-octane fuel that is effective in controlling knocking combustion. In addition, as a low-carbon fuel with a high hydrogen-carbon ratio, it emits less carbon dioxide and almost no particulate matter compared to conventional fossil fuels. Stoichiometric combustion engines equipped with a three-way catalyst are useful in various fields such as transportation and power generation because of their excellent exhaust emission reduction performance. However, stoichiometric combustion engines have a disadvantage of lower thermal efficiency compared to lean combustion engines. In this study, a combination of high compression ratio and Atkinson cycle was implemented in a 11 liter, 6-cylinder, spark-ignition engine to improve the thermal efficiency of the stoichiometric engine. As a result, pumping and friction losses were reduced and the operating range was extended with optimized Atkinson camshaft. Based on the exhaust gas limit temperature of 730℃, the maximum load and thermal efficiency were improved to BMEP 0.66 MPa and BTE 35.7% respectively.

가솔린, 메탄올, M90 연료를 사용한 전기점화기관에서의 열역학 제 2법칙적 성능해석 (A Performance Analysis of a Spark Ignition Engine Using Gasoline, Methanol and M90 by the Thermodynamic Second Law)

  • 김성수
    • 동력기계공학회지
    • /
    • 제13권6호
    • /
    • pp.22-28
    • /
    • 2009
  • 열역학 제 2법칙의 관점의 열역학적 가용에너지인 엑서지 해석법을 적용하여 가솔린, 메탄올, M90 연료를 사용한 전기점화 기관의 성능해석을 수행하였다. 열역학적 사이클 해석을 위하여 사이클을 구성하는 각 과정은 열역학적 모델로 단순화하였고, 크랭크 각도에 따른 실린더의 압력과 작동유체를 구성하는 연료, 공기 및 연소생성물의 열역학적 물성 값들을 이용하여 각 과정에서의 엑서지와 손실 일을 계산하였다. 실험데이터는 단기통 전기점화기관을 가솔린, 메탄올과 M90(메탄을 90%+부탄 10%의 혼합연료)을 연료로 WOT(Wide Open Throttle), MBT(Minimum advanced spark timing for Best Torque), 2500rpm 조건으로 운전하여 측정하였다. 계산에 이용한 자료는 실험으로 측정한 크랭크 각도에 따른 연소실의 압력, 흡입공기와 연료유량, 흡입공기 온도, 냉각수 온도와 배출가스 온도 등이다. 이를 이용하여 각 과정에서의 엑서지와 손실 일을 계산하였으며 각 과정에서의 손실 일은 연소과정에서 가장 크며 팽창과정, 배출과정, 압축과정 및 흡입과정 순으로 크게 나타났다.

  • PDF

최적의 연료분사와 점화시기 제어를 위한 자동차 엔진용 전자제어장치 설계 및 개발 (Design and Development of an Electronic Control Unit of the Automobile Engine for Optimal Fuel Injection and Spark Timing Control)

  • 김태훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권3호
    • /
    • pp.644-654
    • /
    • 2001
  • In this paper, an electronic control unit of the automobile engine for optimal fuel injection an spark timing control has been designed and developed. This system includes hardware and software for a precise control of fuel injection and ignition timing. Especially, the crank angle sensor provides two separate signals: One is the position signal (POS) which indicates 180 degree pulses per revolution, and the other is the reference signal (REF) that represents each cylinder individually. Consequently, the developed engine control system has been able to control fuel injection and ignition timing more quickly and accurately. Through the experiment, it has been found that the fuel injection duration and the position of MBT have been influenced by coolant temperature, air flow rate and engine speed.

  • PDF