• Title/Summary/Keyword: spar-type floating platform

Search Result 14, Processing Time 0.027 seconds

Numerical study on the resonance response of spar-type floating platform in 2-D surface wave

  • Choi, Eung-Young;Cho, Jin-Rae;Jeong, Weui-Bong
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.37-46
    • /
    • 2017
  • This paper is concerned with the numerical study on the resonance response of a rigid spar-type floating platform in coupled heave and pitch motion. Spar-type floating platforms, widely used for supporting the offshore structures, offer an economic advantage but those exhibit the dynamically high sensitivity to external excitations due to their shape at the same time. Hence, the investigation of their dynamic responses, particularly at resonance, is prerequisite for the design of spar-type floating platforms which secure the dynamic stability. Spar-type floating platform in 2-D surface wave is assumed to be a rigid body having 2-DOFs, and its coupled dynamic equations are analytically derived using the geometric and kinematic relations. The motion-variance of the metacentric height and the moment of inertia of floating platform are taken into consideration, and the hydrodynamic interaction between the wave and platform motions is reflected into the hydrodynamic force and moment and the frequency-dependent added masses. The coupled nonlinear equations governing the heave and pitch motions are solved by the RK4 method, and the frequency responses are obtained by the digital Fourier transform. Through the numerical experiments to the wave frequency, the resonance responses and the coupling in resonance between heave and pitch motions are investigated in time and frequency domains.

Hydrodynamic response of alternative floating substructures for spar-type offshore wind turbines

  • Wang, Baowei;Rahmdel, Sajad;Han, Changwan;Jung, Seungbin;Park, Seonghun
    • Wind and Structures
    • /
    • v.18 no.3
    • /
    • pp.267-279
    • /
    • 2014
  • Hydrodynamic analyses of classic and truss spar platforms for floating offshore wind turbines (FOWTs) were performed in the frequency domain, by considering coupling effects of the structure and its mooring system. Based on the Morison equation and Diffraction theory, different wave loads over various frequency ranges and underlying hydrodynamic equations were calculated. Then, Response Amplitude Operators (RAOs) of 6 DOF motions were obtained through the coupled hydrodynamic frequency domain analysis of classic and truss spar-type FOWTs. Truss spar platform had better heave motion performance and less weight than classic spar, while the hydrostatic stability did not show much difference between the two spar platforms.

Monitoring system for the wind-induced dynamic motion of 1/100-scale spar-type floating offshore wind turbine

  • Kim, C.M.;Cho, J.R.;Kim, S.R.;Lee, Y.S.
    • Wind and Structures
    • /
    • v.24 no.4
    • /
    • pp.333-350
    • /
    • 2017
  • Differing from the fixed-type, the dynamic motion of floating-type offshore wind turbines is very sensitive to wind and wave excitations. Thus, the sensing and monitoring of its motion is important to evaluate the dynamic responses to the external excitation. In this context, a monitoring system for sensing and processing the wind-induced dynamic motion of spar-type floating offshore wind turbine is developed in this study. It is developed by integrating a 1/00 scale model of 2.5MW spar-type floating offshore wind turbine, water basin equipped with the wind generator, sensing and data acquisition systems, real-time CompactRIO controller and monitoring program. The scale model with the upper rotatable blades is installed within the basin by means of three mooring lines, and its translational and rotational motions are detected by 3-axis inclinometer and accelerometers and gyroscope. The detected motion signals are processed using a real-time controller CompactRIO to calculate the acceleration and tilting angle of nacelle and the attitude of floating platform. The developed monitoring system is demonstrated and validated by measuring and evaluating the time histories and trajectories of nacelle and platform motions for three different wind velocities and for eight different fairlead positions.

Resonant response of spar-type floating platform in coupled heave and pitch motion

  • Choi, E.Y.;Cho, J.R.;Jeong, W.B.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.513-521
    • /
    • 2018
  • In this paper, the resonance response of spar-type floating platform in coupled heave and pitch motion is investigated using a CPU time-effective numerical method. A coupled nonlinear 2-DOF equation of motion is derived based on the potential wave theory and the rigid-body hydrodynamics. The transient responses are solved by the fourth-order Runge-Kutta (RK4) method and transformed to the frequency responses by the digital Fourier transform (DFT), and the first-order approximation of heave response is analytically derived. Through the numerical experiments, the theoretical derivation and the numerical formulation are verified from the comparison with the commercial software AQWA. And, the frequencies of resonance arising from the nonlinear coupling between heave and pitch motions are investigated and justified from the comparison with the analytically derived first-order approximation of heave response.

Natural frequencies and response amplitude operators of scale model of spar-type floating offshore wind turbine

  • Hong, Sin-Pyo;Cho, Jin-Rae
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.785-794
    • /
    • 2017
  • This paper is concerned with the comparative numerical and experimental study on the natural behavior and the motion responses of a 1/75 moored scale model of a 2.5 MW spar-type floating offshore wind turbine subject to 1-D regular wave. Heave, pitch and surge motions and the mooring tensions are investigated and compared by numerical and experimental methods. The upper part of wind turbine which is composed of three rotor blades, hub and nacelle is modeled as a lumped mass and three mooring lines are pre-tensioned by means of linear springs. The numerical simulations are carried out by a coupled FEM-cable dynamics code, while the experiments are performed in a wave tank equipped with the specially-designed vision and data acquisition system. Using the both methods, the natural behavior and the motion responses in RAOs are compared and parametrically investigated to the fairlead position, the spring constant and the location of mass center of platform. It is confirmed, from the comparison, that both methods show a good agreement for all the test cases. And, it is observed that the mooring tension is influenced by all three parameters but the platform motion is dominated by the location of mass center. In addition, from the sensitivity analysis of RAOs, the coupling characteristic of platform motions and the sensitivities to the mooring parameters are investigated.

Optimal design of floating substructures for spar-type wind turbine systems

  • Choi, Ejae;Han, Changwan;Kim, Hanjong;Park, Seonghun
    • Wind and Structures
    • /
    • v.18 no.3
    • /
    • pp.253-265
    • /
    • 2014
  • The platform and floating structure of spar type offshore wind turbine systems should be designed in order for the 6-DOF motions to be minimized, considering diverse loading environments such as the ocean wave, wind, and current conditions. The objective of this study is to optimally design the platform and substructure of a 3MW spar type wind turbine system with the maximum postural stability in 6-DOF motions as well as the minimum material cost. Therefore, design variables of the platform and substructure were first determined and then optimized by a hydrodynamic analysis. For the hydrodynamic analysis, the body weight of the system was considered, and the ocean wave conditions were quantified to the wave forces using the Morison's equation. Moreover, the minimal number of computation analysis models was generated by the Design of Experiments (DOE), and the design variables of the platform and substructure were finally optimized by using a genetic algorithm with a neural network approximation.

Numerical and experimental study on dynamic response of moored spar-type scale platform for floating offshore wind turbine

  • Choi, E.Y.;Cho, J.R.;Cho, Y.U.;Jeong, W.B.;Lee, S.B.;Hong, S.P.;Chun, H.H.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.909-922
    • /
    • 2015
  • The dynamic response and the mooring line tension of a 1/75 scale model of spar-type platform for 2.5 MW floating offshore wind turbine subject to one-dimensional regular harmonic wave are investigated numerically and verified by experiment. The upper part of wind turbine which is composed of three rotor blades, hub and nacelle is modeled as a lumped mass the scale model and three mooring lines are pre-tensioned by means of linear springs. The coupled fluid-rigid body interaction is numerically simulated by a coupled FEM-cable dynamics code, while the experiment is performed in a wave tank with the specially-designed vision and data acquisition system. The time responses of surge, heave and pitch motions of the scale platform and the mooring line tensions are obtained numerically and the frequency domain-converted RAOs are compared with the experiment.

Semi-active control of vibrations of spar type floating offshore wind turbines

  • Van-Nguyen, Dinh;Basu, Biswajit;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.18 no.4
    • /
    • pp.683-705
    • /
    • 2016
  • A semi-active algorithm for edgewise vibration control of the spar-type floating offshore wind turbine (SFOWT) blades, nacelle and spar platform is developed in this paper. A tuned mass damper (TMD) is placed in each blade, in the nacelle and on the spar to control the vibrations for these components. A Short Time Fourier Transform algorithm is used for semi-active control of the TMDs. The mathematical formulation of the integrated SFOWT-TMDs system is derived by using Euler-Lagrangian equations. The theoretical model derived is a time-varying system considering the aerodynamic properties of the blade, variable mass and stiffness per unit length, gravity, the interactions among the blades, nacelle, spar, mooring system and the TMDs, the hydrodynamic effects, the restoring moment and the buoyancy force. The aerodynamic loads on the nacelle and the spar due to their coupling with the blades are also considered. The effectiveness of the semi-active TMDs is investigated in the numerical examples where the mooring cable tension, rotor speed and the blade stiffness are varying over time. Except for excessively large strokes of the nacelle TMD, the semi-active algorithm is considerably more effective than the passive one in all cases and its effectiveness is restricted by the low-frequency nature of the nacelle and the spar responses.

Analysis of Effects of Mooring Connection Position on the Dynamic Response of Spar type Floating Offshore Wind Turbine (계류장치 연결 위치가 Spar Type 부유식 해상풍력 발전기의 동적 응답에 미치는 영향 해석)

  • Cho, Yanguk;Cho, Jinrae;Jeong, Weuibong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.407-413
    • /
    • 2013
  • This paper deals with the analysis of dynamic characteristics of mooring system of floating-type offshore wind turbine. A spar-type floating structure which consists of a nacelle, a tower and the platform excepting blades, is used to model the floating wind turbine and connect three catenary cables to substructure. The motion of floating structure is simulated when the mooring system is attached using irregular wave Pierson-Moskowitz model. The mooring system is analyzed by changing cable position of floating structure. The dynamic behavior characteristics of mooring system are investigated comparing with cable tension and 6-dof motion of floating structure. These characteristics are much useful to initial design of floating-type structure. From the simulation results, the optimized design parameter that is cable position of connect point of mooring cable can be obtained.

Influence of failed blade-pitch-control system to FOWT by aero-elastic-control-floater-mooring coupled dynamic analysis

  • Bae, Yoon Hyeok;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.295-307
    • /
    • 2013
  • More FOWTs (floating offshore wind turbines) will be installed as relevant regulations and technological hurdles are removed in the coming years. In the present study, a numerical prediction tool has been developed for the fully coupled dynamic analysis of FOWTs in time domain including aero-loading, tower elasticity, blade-rotor dynamics and control, mooring dynamics, and platform motions so that the influence of rotor-control dynamics on the hull-mooring performance and vice versa can be assessed. The developed coupled analysis program is applied to Hywind spar design with 5 MW turbine. In case of spar-type floaters, the control strategy significantly influences the hull and mooring dynamics. If one of the control systems fails, the entire dynamic responses of FOWT can be significantly different. Therefore, it is important to maintain various control systems in a good operational condition. In this regard, the effects of failed blade pitch control system on FOWT performance including structural and dynamic responses of blades, tower, and floater are systematically investigated. Through this study, it is seen that the failure of one of the blade pitch control system can induce significant dynamic loadings on the other blades and the entire FOWT system. The developed technology and numerical tool are readily applicable to any types of floating wind farms in any combinations of irregular waves, dynamic winds, and steady currents.