• Title/Summary/Keyword: spandrel walls

Search Result 7, Processing Time 0.021 seconds

Out-of-plane seismic failure assessment of spandrel walls in long-span masonry stone arch bridges using cohesive interface

  • Bayraktar, Alemdar;Hokelekli, Emin;Halifeoglu, Meral;Halifeoglu, Zulfikar;Ashour, Ashraf
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.83-96
    • /
    • 2020
  • The main structural elements of historical masonry arch bridges are arches, spandrel walls, piers and foundations. The most vulnerable structural elements of masonry arch bridges under transverse seismic loads, particularly in the case of out-of-plane actions, are spandrel wall. The vulnerability of spandrel walls under transverse loads increases with the increasing of their length and height. This paper computationally investigates the out-of-plane nonlinear seismic response of spandrel walls of long-span and high masonry stone arch bridges. The Malabadi Bridge with a main arch span of 40.86m and rise of 23.45m built in 1147 in Diyarbakır, Turkey, is selected as an example. The Concrete Damage Plasticity (CDP) material model adjusted to masonry structures, and cohesive interface interaction between the infill and the spandrel walls and the arch are considered in the 3D finite element model of the selected bridge. Firstly, mode shapes with and without cohesive interfaces are evaluated, and then out-of-plane seismic failure responses of the spandrel walls with and without the cohesive interfaces are determined and compared with respect to the displacements, strains and stresses.

Experimental investigation on in-plane seismic behavior of multistory opening masonry walls with two different failure modes

  • Xin, Ren;Bi, Dengshan;Huang, Wei
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.479-488
    • /
    • 2022
  • Aiming to examine different failure patterns in multistory URM walls, two 1/3 scaled three-story and three-bay URM models were designed for the quasi-static loading tests to contrastively investigate the failure processes and characteristics of the multistory URM walls. Two different failure responses were observed with special attention paid to the behavior of spandrel-failure mode. By evaluating the seismic performance and deformation behavior of two test walls, it is demonstrated that spandrels, that haven't been properly designed in some codes, are of great significance in the failure of entire URM walls. Additionally, compared with pier-failure mode, spandrel-failure for multistory URM building is more reasonable and advisable as its effectively participation in energy dissipation and its efficiently improvement on seismic capacity and deformation in the overall structure. Furthermore, the experimental results are beneficial to improve seismic design and optimize reinforcement method of URM buildings.

The Influence of Spandrel Wall and Fill on the Dynamic Characteristics of Historic Stone Masonry Arch Bridges (무사석과 적심석이 홍예교량의 동적특성에 미치는 영향)

  • Lee, Soo-Gon;Lee, Sung-Min;Song, Chang-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.161-168
    • /
    • 2005
  • The influence of spandrel wall and fill above the extrados on the structural behavior and load capacity of stone masonry arch bridges has not been thoroughly studied yet. One can estimate the structural characteristics and behavior of stone masonry structures by measuring the dynamic characteristics. To investigate the influence of spandrel wall and fill on the dynamic characteristics of historic stone masonry arch bridges, on-site free vibration tests were performed for 5 stone bare arches with no spandrel wall and backfill. And the natural frequencies of those arches were compared with the natural frequencies of 18 stone arch bridges with spandrel walls. Experimental results show from the experiments show that the presence of spandrel wall and fill may increase the natural frequency of arch bridge because the stiffness increase exceeds the mass increase due to spandrel wall.

Finite element modeling of the influence of FRP techniques on the seismic behavior of historical arch stone bridge

  • Mahdikhani, Mahdi;Naderi, Melika;Zekavati, Mehdi
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.99-112
    • /
    • 2016
  • Since the preservation of monuments is very important to human societies, different methods are required to preserve historic structures. In this paper, 3D model of arch stone bridge at Pont Saint Martin, Aosta, Italy, was simulated by 1660 integrated separate stones using ABAQUS$^{(R)}$ software to investigate the seismic susceptibility of the bridge. The main objective of this research was to study a method of preservation of the historical stone bridge against possible earthquakes using FRP techniques. The nonlinear behavior model of materials used theory of plasticity based on Drucker-Prager yield criterion. Then, contact behavior between the block and mortar was modeled. Also, Seismosignal software was used to collect data related to 1976 Friuli Earthquake Italy, which constitutes a real seismic loading. The results show that, retrofitting of the arch stone bridge using FRP techniques decreased displacement of stones of spandrel walls, which prevents the collapse of stones.

DYNAMIC CHARACTERISTICS OF ANCIENT STONE ARCH BRIDGES

  • SungMinLee;HoWoongShon
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.3
    • /
    • pp.125-130
    • /
    • 2003
  • The aim of this paper is to investigate the dynamic characteristics of ancient stone bridges in Korea and to find the factors influencing their natural frequencies. For this end, on-site free vibration tests were performed for 18 stone arch bridges and one ancient ice storage composed of 4 arches. Test results revealed that the vertical fundamental frequencies were in the range of 10Hz to 45Hz. The damping ratios estimated from the records of free vibration tests showed a wide variety of values, that is, from 0.02 to 0.134. It has been known that the natural frequencies of stone arch bridges are mainly governed by their arch spans. Test results reveal that the presence of spandrel walls and the use of mortar for joints are also important factors influencing the natural frequencies of stone arch bridges.

  • PDF

Computational Modelling Method by Using the Dynamic Characteristics of Stone Masonry Arch Bridges (동적특성을 이용한 홍예교의 모델링방법 연구)

  • Lee, Sung-Min;Park, I-Sun;Choi, Hee-Soo;Choi, Chui-Kyoung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.3
    • /
    • pp.83-90
    • /
    • 2008
  • It is hard to predict the mechanical characteristics of discontinuous stone masonry structures by the static analysis method, because of irregularity of face stones and also due to randomness of backfill materials. Inversely, one can estimate the mechanical characteristics by comparing the natural frequencies between measured and computed. The aim of this paper is to investigate the computational modeling method of ancient stone arch bridges in Korea and to find the factors influencing their dynamic characteristics. The results revealed that the rigidity of spandrel walls and backfill materials are the most important factors influencing the natural frequencies of stone arch bridges.

  • PDF

A Study on Structural Characteristics of Stone Masonry Wall Structure (숭례문 사례를 통한 육축 문화재의 구조특성 연구)

  • Lee, Sung-Min;Lee, Ki-Hak;Choi, Hee-Soo;Park, Joo-Kyung;Choi, Chui-Kyoung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.4
    • /
    • pp.61-69
    • /
    • 2011
  • It is hard to predict the mechanical characteristics of discontinuous stone masonry structures with the use of by the static analysis method, because of irregularity of face stones and also due to randomness of backfill materials. Inversely, one can estimate the mechanical characteristics by comparing the natural frequencies between measured from the field tests and computed from the analytical models. The aim of this paper is to investigate the effectiveness and confidence of the computational modeling method of ancient stone arch bridges in Korea and to find the factors influencing their dynamic characteristics. The results revealed that the rigidity of spandrel walls and backfill materials are the most important factors influencing the natural frequencies of stone arch bridges, which are the critical for the stability of the stone arch structure.