• Title/Summary/Keyword: span/depth ratio

Search Result 297, Processing Time 0.022 seconds

Experimental Study on Ductility of RC Columns According to Configuration of Transverse Reinforcement (횡보강근 배근형상에 따른 RC 기둥의 연성에 관한 실험적 연구)

  • Kim, Min Jun;Kim, Do Jin;Kim, Sang Woo;Lee, Jung Yoon;Kim, Kil Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.18-25
    • /
    • 2012
  • This paper estimates the ductility of reinforced concrete columns according to configurations of transverse reinforcement. A total of 8 reinforced concrete columns were cast and tested in flexure. The test variables in this study were the configurations, yield strength, and amount of transverse reinforcement. The specimens had a cross-section of $250{\times}250mm$ and had a shear span-to-depth ratio of 4.1 to induce flexural failure. In the test, cyclic lateral load was applied to the specimens with a constant axial load. The experimental result indicated that the specimens with proposed configurations of transverse reinforcement showed higher ductility and energy dissipation capacity than the specimens with rectangular tie.

Evaluation of Structural Performance of Reinforced Concrete Beams According to Water Absorption of Recycled Coarse Aggregate (순환굵은골재 흡수율에 따른 철근콘크리트 보의 구조 성능 평가)

  • Kim, Sang Woo;Han, Dong Seok;Lee, Hyun Ah;Ko, Man Young;Kim, Kil Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.49-58
    • /
    • 2012
  • This study estimates the flexural behavior of reinforced recycled aggregate concrete beams. Three specimens with different types and water absorption of coarse aggregates were constructed and tested. Not only all specimens were designed to be subjected to 4-point concentrated loads, but also the shear span-to-depth ratio of 2.5 was adjusted to all specimens to increase the effect of shear. A nonlinear flexural analysis considering the tension stiffening effect of concrete was performed to predict the moment versus curvature relationships of the specimens. Furthermore, a nonlinear finite element analysis considering the effect of shear was carried out to estimate the behavior of the specimens. It can be found from experimental results that the flexural strength and the crack properties of the specimens with recycled coarse aggregate having a water absorption of 6% were similar to those of the specimen with natural aggregates. The comparison between the experimental and analytical results showed that existing analytical methods can be successfully used to predict the behavior of reinforced recycled aggregate concrete beams.

An Experimental Study on Flexural Behavior in Framed Structure of P.S.T Method (P.S.T 공법 라멘 구조물의 휨 거동 특성에 관한 실험적 연구)

  • Cui, Jie;Yoon, Jong Nam;Eum, Ki Young;Hong, Sung Nam;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.144-152
    • /
    • 2011
  • The existing underground trenchless methods use reinforcing rod in steel tube to obtain structural stiffness. However, there are some problems such as inconvenience of work and expensive material fee which are resulted from limited working space and reinforcing work. To resolve these problems, a new trenchless method, namely P.S.T method (Prestressed Segment Tunnel Method), is developed which uses joint to connect the steel segment and form erection structure in underground construction. Further, installing strands for prestressing. In order to evaluate the flexural capacity of the P.S.T method structure, experiment was conducted. The parameters considered in the experiment are the span-to-depth ratio, diameter of steel tube at corner, prestressing force and welding of joint. Altogether examining the flexural behavior, the effect of deflection in structure according to different parameters has also been analysised.

The Shear Resistance of Rc Deep Beam with Web Opening Repaired and Reinforced by Fiber Sheets After Shear Failure (깊이가 큰 철근콘크리트 유공보의 보수·보강 전후의 내력에 관한 연구)

  • Yang, Chang-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.149-158
    • /
    • 2004
  • In this study, deep beam specimens are designed to have the effective shear span to depth ratio 1.0 and web opening within effective shear region. The purpose of this study is to investigate experimentally the shear strengthening effect between before failure and after failure upon using fiber sheets for RC deep beam with opening in web. The results can be summarized as follows; 1)When deep beams with web opening were failed in shear, their initial diagonal crack load and crack width were not influenced by their types of the arranged steel bars. 2)Deep beam with the horizontal reinforced bar was effective in the ultimate load of deep beam with web opening in shear failure 3)There were the approximate values between the experimental values and the analysis of finite element method. 4)The ultimate failure strengths of the repaired and strengthened specimens were increased about 34.4%~83.8% in comparison with specimens not to be strengthened.

Shear strength prediction of concrete-encased steel beams based on compatible truss-arch model

  • Xue, Yicong;Shang, Chongxin;Yang, Yong;Yu, Yunlong;Wang, Zhanjie
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.785-796
    • /
    • 2022
  • Concrete-encased steel (CES) beam, in which structural steel is encased in a reinforced concrete (RC) section, is widely applied in high-rise buildings as transfer beams due to its high load-carrying capacity, great stiffness, and good durability. However, these CES beams are prone to shear failure because of the low shear span-to-depth ratio and the heavy load. Due to the high load-carrying capacity and the brittle failure process of the shear failure, the accurate strength prediction of CES beams significantly influences the assessment of structural safety. In current design codes, design formulas for predicting the shear strength of CES beams are based on the so-called "superposition method". This method indicates that the shear strength of CES beams can be obtained by superposing the shear strengths of the RC part and the steel shape. Nevertheless, in some cases, this method yields errors on the unsafe side because the shear strengths of these two parts cannot be achieved simultaneously. This paper clarifies the conditions at which the superposition method does not hold true, and the shear strength of CES beams is investigated using a compatible truss-arch model. Considering the deformation compatibility between the steel shape and the RC part, the method to obtain the shear strength of CES beams is proposed. Finally, the proposed model is compared with other calculation methods from codes AISC 360 (USA, North America), Eurocode 4 (Europe), YB 9082 (China, Asia), JGJ 138 (China, Asia), and AS/NZS 2327 (Australia/New Zealand, Oceania) using the available test data consisting of 45 CES beams. The results indicate that the proposed model can predict the shear strength of CES beams with sufficient accuracy and safety. Without considering the deformation compatibility, the calculation methods from the codes AISC 360, Eurocode 4, YB 9082, JGJ 138, and AS/NZS 2327 lead to excessively conservative or unsafe predictions.

Shear behaviour of thin-walled composite cold-formed steel/PE-ECC beams

  • Ahmed M. Sheta;Xing Ma;Yan Zhuge;Mohamed A. ElGawady;Julie E. Mills;El-Sayed Abd-Elaal
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.75-92
    • /
    • 2023
  • The novel composite cold-formed steel (CFS)/engineered cementitious composites (ECC) beams have been recently presented. The new composite section exhibited superior structural performance as a flexural member, benefiting from the lightweight thin-walled CFS sections with improved buckling and torsional properties due to the restraints provided by thinlayered ECC. This paper investigated the shear performance of the new composite CFS/ECC section. Twenty-eight simply supported beams, with a shear span-to-depth ratio of 1.0, were assembled back-to-back and tested under a 3-point loading scheme. Bare CFS, composite CFS/ECC utilising ECC with Polyethylene fibres (PE-ECC), composite CFS/MOR, and CFS/HSC utilising high-strength mortar (MOR) and high-strength concrete (HSC) as replacements for PE-ECC were compared. Different failure modes were observed in tests: shear buckling modes in bare CFS sections, contact shear buckling modes in composite CFS/MOR and CFS/HSC sections, and shear yielding or block shear rupture in composite CFS/ECC sections. As a result, composite CFS/ECC sections showed up to 96.0% improvement in shear capacities over bare CFS, 28.0% improvement over composite CFS/MOR and 13.0% over composite CFS/HSC sections, although MOR and HSC were with higher compressive strength than PE-ECC. Finally, shear strength prediction formulae are proposed for the new composite sections after considering the contributions from the CFS and ECC components.

The influence of Winkler-Pasternak elastic foundations on the natural frequencies of imperfect functionally graded sandwich beams

  • Avcar, Mehmet;Hadji, Lazreg;Akan, Recep
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.99-112
    • /
    • 2022
  • The present study examines the natural frequencies (NFs) of perfect/imperfect functionally graded sandwich beams (P/IP-FGSBs), which are composed of a porous core constructed of functionally graded materials (FGMs) and a homogenous isotropic metal and ceramic face sheets resting on elastic foundations. To accomplish this, the material properties of the FGSBs are assumed to vary continuously along the thickness direction as a function of the volume fraction of constituents expressed by the modified rule of the mixture, which includes porosity volume fraction represented using four distinct types of porosity distribution models. Additionally, to characterize the reaction of the two-parameter elastic foundation to the Perfect/Imperfect (P/IP) FGSBs, the medium is assumed to be linear, homogeneous, and isotropic, and it is described using the Winkler-Pasternak model. Furthermore, the kinematic relationship of the P/IP-FGSBs resting on the Winkler-Pasternak elastic foundations (WPEFs) is described using trigonometric shear deformation theory (TrSDT), and the equations of motion are constructed using Hamilton's principle. A closed-form solution is developed for the free vibration analysis of P/IP-FGSBs resting on the WPEFs under four distinct boundary conditions (BCs). To validate the new formulation, extensive comparisons with existing data are made. A detailed investigation is carried out for the effects of the foundation coefficients, mode numbers (MNs), porosity volume fraction, power-law index, span to depth ratio, porosity distribution patterns (PDPs), skin core skin thickness ratios (SCSTR), and BCs on the values of the NFs of the P/IP-FGSBs.

Effects of a new stirrup hook on the behavior of reinforced concrete beams

  • Zehra Sule Garip;Furkan Erdema
    • Structural Engineering and Mechanics
    • /
    • v.91 no.3
    • /
    • pp.263-277
    • /
    • 2024
  • The primary aim of this study is to introduce an innovative configuration for stirrup hooks in reinforced concrete beams and analyze the impact of factors such as stirrup spacing, placement, and hook lengths on the structural performance of reinforced concrete beam elements. A total of 18 specimens were produced and subjected to reversed cyclic loading, with two specimens serving as reference specimens and the remaining 16 specimens utilizing a specifically developed stirrup hook configuration. The experiment used reinforced concrete beams scaled down to half their original size. These beams were built with a shear span-to-depth ratio of 3 (a/d=3). The experimental samples were divided into two distinct groups. The first group comprises nine test specimens that consider the contribution of concrete to shear strength, while the second group consists of nine test specimens that do not consider this contribution. The preparation of reference beam specimens for both groups involved the utilization of standard hooks. The stirrup hooks in the test specimens are configured with a 90-degree angle positioned at the midpoint of the bottom section of the beam. The criteria considered in this study included the distance between hooks, hook angle, stirrup spacing, hook orientation, and hook length. In the experimental group examining the contribution of concrete on shear strength, it was noted that the stirrup hooks of both the R1 reference specimen and specific test specimens displayed indications of opening. However, when the contribution of concrete on shear strength was not considered, it was observed that none of the stirrup hooks proposed in the R0 reference specimen and test specimens showed any indications of opening. Neglecting the contribution of concrete in the assessment of shear strength yielded more favorable outcomes regarding structural robustness. The study found that the strength values obtained using the suggested alternative stirrup hook were similar to those of the reference specimens. Furthermore, all the test specimens successfully achieved the desired strengths.

Shear Strength of Prestressed PC-CIP Composite Beams with Vertical Shear Reinforcement (전단 철근 보강된 프리스트레스 PC와 CIP 합성보의 전단강도)

  • Suh, Jung-Il;Park, Hong-Gun;Hong, Geon-Ho;Kang, Su-Min;Kim, Chul-Goo
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.399-409
    • /
    • 2015
  • Recently, the use of composite construction method using precast (PC) and cast-in-place (CIP) concrete is increased in modular construction. For PC members, pre-tensioning is used to improve efficiency of the structural performance. However, current design codes do not clearly define shear strength of prestressed PC-CIP composite members. In this study, 22 specimens were tested to evaluate shear strength of prestressed composite members with vertical shear reinforcement. The test variables were the area ratio of high-strength (60 MPa) to low-strength concrete (24 MPa), prestressing force of strands, shear span-to-depth ratio(a/d), and vertical shear reinforcement ratio. The test results showed the prestressing force did not completely restrain diagonal cracking of non-prestressed concrete in the web. Thus, the effect of prestress force was not insignificant in the effect for monolithic beams. The vertical shear strength and horizontal shear strength of the composite beams were compared with the strength predictions of KCI design method.

Plastic Hinge Length of Reinforced Concrete Columns with Low Height-to-Width Ratio (전단경간비가 작은 철근콘크리트 기둥의 소성힌지 길이)

  • Park, Jong-Wook;Woo, Jae-Hyun;Kim, Byung-Il;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.675-684
    • /
    • 2010
  • The reinforced concrete members are designed to fail in flexural to lead ductile fracture. In the building structures, the failure is typically imposed on beams to prevent damages in columns. However, progression of plastic collapse mechanism may ultimately develop, a plastic hinge at the bottem end of the first floor column, which then can be subjected to shear or bond finally due to large axial force and small shear span-to-depth ratio. In this study, 10 RC column specimens failed in shear after flexural yielding was investigated to determine the factors affecting the plastic hinge length. The findings of this study showed that the most effective factor affecting the plastic hinge length was an axial force. As an axial force increase, an axial strain and a ductility ratio were decreased obviously. The test also shows the observed plastic hinge length was about 0.8~1.2d and the this result has difference compared with forward research.