With the rapid growth of the Internet, millions of indiscriminate advertising SMS are sent every day because of the convenience of sending and receiving data. Although we still use methods to block spam words manually, we have been actively researching how to filter spam in a various ways as machine learning emerged. However, spam words and patterns are constantly changing to avoid being filtered, so existing machine learning mechanisms cannot detect or adapt to new words and patterns. Recently, the concept of Lifelong Learning emerged to overcome these limitations, using existing knowledge to keep learning new knowledge continuously. In this paper, we propose a method of spam filtering system using ensemble techniques of naive bayesian which is most commonly used in document classification and LLML(Lifelong Machine Learning). We validate the performance of lifelong learning by applying the model ELLA and the Naive Bayes most commonly used in existing spam filters.
VoIP service provides various functions that PSTN phone service hasn't been able to provide. Since it also has superiority in service charge, the number of user is increasing these days. When we think of the other side in cost aspect, the spam caller can also send his/her commercial message over phone line using more economic way. This paper presents the characteristics that should be considered to detect the spam call using greylisting method. We have explored static and dynamic characteristics in VoIP calls, and analyzed the relation among them. Especially, we have surveyed the authentication and charging method of Korean VoIP service provider. We have analyzed each charging method using our spam call simulation result, and derived the charging method that can be favored by spam caller. The contribution of the work is in analysis result of static aspect for SPIT Level calculation in greylisting method.
The Journal of Korean Institute of Communications and Information Sciences
/
v.34
no.9B
/
pp.908-913
/
2009
Mobile phones became important household appliance that cannot be without in our daily lives. And the short messaging service (SMS) in these mobile phones is 1.5 to 2 times more than the voice service. However, the spam filtering functions installed in mobile phones take a method to receive specific number patterns or words and recognize spam messages when those numbers or words are present. However, this method cannot properly filters various types of spam messages currently dispatched. This paper proposes a more powerful and more adaptive spam filtering system using SVM and thesaurus. The system went through a process of isolating words from sample data through pro-processing device and integrating meanings of isolated words using a thesaurus. Then it generated characteristics of integrated words through the chi-square statistics and studied the characteristics. The proposed system is realized in a Window environment and the performance is confirmed through experiments.
The Journal of Korean Association of Computer Education
/
v.10
no.3
/
pp.57-66
/
2007
E-mail system is considered as a most important communication media, which can be used to transmit personal information by internet. But e-mail attack also has been increased by spoofing e-mail sender address. Therefore, this work proposes sender verification faculty for spam mail protection at sender's MTA by using security card for protection forged sender and also for authenticating legal sender. Sender's mail MT A requests security card's code number to sender. Then sender input code number and generate session key after sender verification. Session key is used to encrypt sender's signature and secure message transmission. This work can provide efficient and secure e-mail sender authentication with sender verification and message encryption.
This paper describes an implementation of the spam mail prevention system using reply message with secrete words. When user receives a new e-mail, the e-mail address is compared with the white e-mail addresses in database by the system. If user receives a new e-mail which does not exist in a white e-mail addresses database, a reply e-mail attached with secrete words is delivered automatically. And the system is compared with the white domains first for intranet environment. It speeds up processing time. proposed algorithm is required a small database and faster than the black e-mail addresses comparison. This system is implemented using procmail, PHP and IMAP on Linux and the user can manage the databases on the web.
Journal of the Korea Institute of Information Security & Cryptology
/
v.14
no.2
/
pp.23-33
/
2004
Because of a rapid growth of internet environment, it is also fast increasing to exchange message using e-mail. But, despite the convenience of e-mail, it is rising a currently bi9 issue to waste their time and cost due to the spam mail in an individual or enterprise. Many kinds of solutions have been studied to solve harmful effects of spam mail. Such typical methods are as follows; pattern matching using the keyword with representative method and method using the probability like Naive Bayesian. In this paper, we propose a classification method of spam mails from normal mails using Support Vector Machine, which has excellent performance in pattern classification problems, to compensate for the problems of existing research. Especially, the proposed method practices efficiently a teaming procedure with a word dictionary including a generated index by the n-Gram. In the conclusion, we verified the proposed method through the accuracy comparison of spm mail separation between an existing research and proposed scheme.
Proceedings of the Korean Information Science Society Conference
/
2002.04b
/
pp.223-225
/
2002
인터넷의 급속한 성장과 함께 E-Mail은 대표적인 통신수단의 하나가 되어버렸다. 편리하다는 점을 이용해서 엄청난 양의 스팸메일이 매일같이 쏟아져 오고 , 그 문제점의 심각성에 정보통신부에서 정보통신망 이용촉진 및 정보보호 등에 관한 법률이라는 새로운 법률까지 생겨났다. 본 논문에서는 이 법률에서 요구하는 '광고'라는 문구를 걸러내는 등의 메시지 규칙을 갖는 시스템과 기존의 문서 분류에 널리 쓰이던 나이브 베이지안 분류자(Naive Baesian Classifier)를 결합한 스팸 메일 필터링 시스템(Spam-mail Fitering System)을 제안한다. 제안된 시스템에서는 사용자가 직접 규칙을 작성할 필요없이 학습한 데이터를 갖고 자동으로 스팸메일을 분류할 수가 있다. 들어온 메일은 메시지 규칙 기반 필터가 먼저 적용되고, 메세지 규칙 기반 필터에서 분류되지 않으면 나이브 베이지안 필터에서 분류된다. 실험에서는 제안된 시스템의 성능을 평가하기 위해서 메시지 규칙을 사용한 시스템 및 나이브 베이지만 분류자 시스템과 비교 평가하였다. 또한 임계치를 변경함으로써 제안된 시스템의 성능을 높일 수있도록 하였다.
Annual Conference on Human and Language Technology
/
2010.10a
/
pp.194-196
/
2010
휴대폰의 광범위한 보급으로 문자메시지의 사용이 급증하고 있다. 이와 동시에 사용자가 원하지 않는 광고성 스팸문자도 넘쳐나고 있다. 본 연구는 이러한 스팸문자메시지를 자동으로 판별하는 시스템을 개발하는 것이다. 우리는 기계학습방법인 지지벡터기계(Support Vector Machine)을 사용하여 시스템을 학습하였으며 자질의 선택은 카이제곱 통계량을 이용하였다. 실험결과 F1 척도로 약 95.5%의 정확률을 얻었다
Proceedings of the Korea Information Processing Society Conference
/
2014.11a
/
pp.933-935
/
2014
휴대전화 사용의 대중화로 인하여 개개인의 휴대전화로 수신되는 스팸메시지의 양도 덩달아 증가하게 되었다. 이것은 휴대전화 사용자가 불법광고 노출의 원인이 되고 있다. 이에 많은 스팸메시지 차단기법이 제시되었지만 이는 텍스트기반의 문자메시지에 특화되어있어 문자가 포함되어있는 이미지스팸에는 차단이 어렵다는 문제점이 존재 한다. 이에 본 논문에서는 휴대전화로 오는 이미지메시지 중 스팸이미지를 검출해 내는 모바일 스팸이미지 필터링 시스템을 제시하고자 한다. 제시하고자 하는 시스템은 스팸이미지를 분석하여 이미지의 패턴을 검사하여 특정 패턴이 포함된 이미지에 대해서 스팸이미지로 분류하여 필터링하게 됨으로써, 실제 휴대전화로 수신되는 스팸이미지를 이용한 실험을 진행하였다. 그 결과 기존 텍스트기반 스팸필터링시스템에서 할 수 없었던 스팸이미지 필터링을 할 수 있음을 확인 하였다.
The Journal of the Convergence on Culture Technology
/
v.2
no.1
/
pp.79-85
/
2016
Ransomware was a malicious code that active around the US, but now it spreads rapidly all over the world and emerges in korea recently because of exponential computer supply and increase in users. Initially ransomware uses e-mail as an attack medium in such a way that induces to click a file through the spam mail Pam, but it is now circulated through the smart phone message. The current trend is an increase in the number of damage, including attacks such as the domestic large community site by ransomware hangul version. Ransomware outputs a warning message to the user to encrypt the file and leads to monetary damages and demands for payment via bitcoin as virtual currency is difficult to infer the tracking status. This paper presents an analysis and solutions to damage cases caused by ransomware.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.