• Title/Summary/Keyword: spacing between buildings

Search Result 14, Processing Time 0.027 seconds

Influence of spacing between buildings on wind characteristics above rural and suburban areas

  • Kozmar, Hrvoje
    • Wind and Structures
    • /
    • v.11 no.5
    • /
    • pp.413-426
    • /
    • 2008
  • A wind tunnel study has been carried out to determine the influence of spacing between buildings on wind characteristics above rural and suburban type of terrain. Experiments were performed for two types of buildings, three-floor family houses and five-floor apartment buildings. The atmospheric boundary layer (ABL) models were generated by means of the Counihan method using a castellated barrier wall, vortex generators and a fetch of roughness elements. A hot wire anemometry system was applied for measurement of mean velocity and velocity fluctuations. The mean velocity profiles are in good agreement with the power law for exponent values from ${\alpha}=0.15$ to ${\alpha}=0.24$, which is acceptable for the representation of the rural and suburban ABL, respectively. Effects of the spacing density among buildings on wind characteristics range from the ground up to $0.6{\delta}$. As the spacing becomes smaller, the mean flow is slowed down, whilst, simultaneously, the turbulence intensity and absolute values of the Reynolds stress increase due to the increased friction between the surface and the air flow. This results in a higher ventilation efficiency as the increased retardation of horizontal flow simultaneously accompanies an intensified vertical transfer of momentum.

Numerical prediction of the proximity effects on wind loads of low-rise buildings with cylindrical roofs

  • Deepak Sharma;Shilpa Pal;Ritu Raj
    • Wind and Structures
    • /
    • v.36 no.4
    • /
    • pp.277-292
    • /
    • 2023
  • Low-rise structures are generally immersed within the roughness layer of the atmospheric boundary layer flows and represent the largest class of the structures for which wind loads for design are being obtained from the wind standards codes of distinct nations. For low-rise buildings, wind loads are one of the decisive loads when designing a roof. For the case of cylindrical roof structures, the information related to wind pressure coefficient is limited to a single span only. In contrast, for multi-span roofs, the information is not available. In this research, the numerical simulation has been done using ANSYS CFX to determine wind pressure distribution on the roof of low-rise cylindrical structures arranged in rectangular plan with variable spacing in accordance with building width (B=0.2 m) i.e., zero, 0.5B, B, 1.5B and 2B subjected to different wind incidence angles varying from 0° to 90° having the interval of 15°. The wind pressure (P) and pressure coefficients (Cpe) are varying with respect to wind incidence angle and variable spacing. The results of present numerical investigation or wind induced pressure are presented in the form of pressure contours generated by Ansys CFD Post for isolated as well as variable spacing model of cylindrical roofs. It was noted that the effect of wind shielding was reducing on the roofs by increasing spacing between the buildings. The variation pf Coefficient of wind pressure (Cpe) for all the roofs have been presented individually in the form of graphs with respect to angle of attacks of wind (AoA) and variable spacing. The critical outcomes of the present study will be so much beneficial to structural design engineers during the analysis and designing of low-rise buildings with cylindrical roofs in an isolated as well as group formation.

Impact of the Aerodynamic Characteristics of Twin Buildings on Wind Responses (트윈 빌딩의 공력 특성이 풍응답에 미치는 영향 평가)

  • Kim, Bub-Ryur
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • The wind responses of twin buildings are determined by the characteristics of wind loads and the dynamic characteristics of the structural systems of the buildings. In this study, the characteristics of wind pressure that influence wind responses were identified for two different spacings between the twin buildings using a wind tunnel test and the proper orthogonal decomposition (POD) method. Structural dynamic characteristics were also identified using 3D structural system modeling. The double modal transformation method was utilized to evaluate the characteristics of wind pressure for across-wind and along-wind conditions and the effect of the dynamic characteristics of each structure on the wind responses. The channeling and vortex effects were identified through the POD method. Across-wind loads were significantly affected by the spacings between the twin buildings, whereas along-wind loads were minimally affected. Similarly, while using the double modal transformation method, a significant difference was noticed in case of the cross-participation coefficients in the across-wind direction condition for the different spacings between the buildings; however, the along-wind direction condition showed negligible difference. Therefore, the spacing between the two buildings plays a more important role in across-wind responses compared to along-wind responses.

Seismic Risk Assessment of Existing Low-rise Reinforced Concrete Buildings in Korea

  • LEE, Kang Seok;Jung, Ju-Seong;Choi, Yun-Chul
    • Architectural research
    • /
    • v.20 no.1
    • /
    • pp.17-25
    • /
    • 2018
  • Countermeasures against earthquake disasters such as the seismic capacity evaluation and/or retrofit schemes of buildings, especially existing low-rise reinforced concrete buildings, have not been fully performed since Korea had not experienced many destructive earthquakes in the past. However, due to more than 1200 earthquakes with low or moderate intensity in the off-coastal and inland of Korea during the past 20 years, and due to the recent moderate earthquakes in Korea, such as the 2016 Gyeongju Earthquake with M=5.8 and the 2017 Pohang Earthquake with M=5.4, the importance of the future earthquake preparedness measures is highly recognized in Korea. The main objective of this study is to provide the basic information regarding seismic capacities of existing low-rise reinforced concrete buildings in Korea. In this paper, seismic capacities of 14 existing low-rise reinforced concrete public buildings in Korea are evaluated based on the Japanese Standard for Evaluation of Seismic Capacity of Existing Reinforced Concrete Buildings. Seismic capacities between existing buildings in Korea and those in Japan is compared, and the relationship of seismic vulnerability of Korean buildings and Japanese buildings damaged due to severe earthquakes are also discussed. Results indicated that Korean existing low-rise reinforced concrete buildings have a narrow distribution of seismic capacities and they are relatively lower than Japanese buildings, and are also expected to have severe damage under the earthquake intensity level experienced in Japan. It should be noted from the research results that the high ductility in Korean existing low-rise buildings obtained from the Japanese Standard may be overestimated, because most buildings investigated herein have the hoop spacing wider than 30 cm. In the future, the modification of strength and ductility indices in the Japanese Standard to propose the seismic capacity evaluation method of Korean buildings is most needed.

Strength Properties of Multi-layered Insulation according to the Type of Configuration (다층형 단열재의 구성 형식에 따른 강도 특성 연구)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Song, Sung-Yong;Kim, Deuck Mo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.141-142
    • /
    • 2019
  • As part of the recent low-energy policy, insulation standards for buildings are increasing every year. In addition, the conventional styrofoam heat insulation material has a problem in that the thickness of the heat insulation material to achieve the standard heat transmission rate is rapidly increased. Although the risk of spreading the structure vulnerable to fire due to insufficient spacing between buildings due to thickened insulation is increasing, the high cost of high efficiency insulation is difficult to solve. On the other hand, it is known that the method to be used as a formwork using insulation is excellent in cost reduction effect by reducing the amount of formwork used and simplifying the subsequent insulation work. The purpose of this study is to evaluate the strength characteristics of multi - layered insulation materials with appropriate strength by reducing the thickness of the insulation by appropriately combining high performance phenolic foam insulation and styrofoam insulation.

  • PDF

Behavior of Reinforced Concrete Slabs Connected with Hinge Joints of Remodelling Buildings (리모델링 건물의 활절점에 의하여 연결된 철근콘크리트 바닥판의 거동 평가)

  • Sim Kyu-Kwan;Kim Sang-Sik;Lee Jung-Yoon;Choi kwang-Ho;Im Juhyeuk
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.761-768
    • /
    • 2005
  • Lately outmoded and functionally obsolete buildings constructed in 1960s and 1970s are often remodelled and restored. Even though there are not serious structural defects in the existing buildings, many old buildings have been reconstructed to improve residence quality or to extend residence area of the buildings. The experimental or theoretical research on plane expansion of RC apartments is quite scare. In this research, 12 specimens and 19 RC slabs connected by hinged joints were tested. The new slab was connected to the existing slab by hinge joints injecting dowel bars between two slabs. Main parameters of the slabs are types of the dowel bars (D13 and D19), spacing of the dowel bars (150mm, 300mm, and 450mm), and the locations of the steel bars in the existing slabs. The test results indicated that the shear strength of the RC test slabs having various types of dowel bars was about twice that calculated by the ACI 318-02 code. All slabs failed in concrete spatting and the dowel steel bars did not reach their yield strengths.

Characteristics of the aerodynamic interference between two high-rise buildings of different height and identical square cross-section

  • Dongmei, Huang;Xue, Zhu;Shiqing, He;Xuhui, He;Hua, He
    • Wind and Structures
    • /
    • v.24 no.5
    • /
    • pp.501-528
    • /
    • 2017
  • In this work, wind tunnel tests of pressure measurements are carried out to assess the global aerodynamic interference factors, the local wind pressure interference factors, and the local lift spectra of an square high-rise building interfered by an identical cross-sections but lower height building arranged in various relative positions. The results show that, when the interfering building is located in an area of oblique upstream, the RMS of the along-wind, across-wind, and torsional aerodynamic forces on the test building increase significantly, and when it is located to a side, the mean across-wind and torsional aerodynamic forces increase; In addition, when the interfering building is located upstream or staggered upstream, the mean wind pressures on the sheltered windward side turn form positive to negative and with a maximum absolute value of up to 1.75 times, and the fluctuating wind pressures on the sheltered windward side and leading edge of the side increase significantly with decreasing spacing ratio (up to a maximum of 3.5 times). When it is located to a side, the mean and fluctuating wind pressures on the leading edge of inner side are significantly increased. The three-dimensional flow around a slightly-shorter disturbing building has a great effect on the average and fluctuating wind pressures on the windward or cross-wind faces. When the disturbing building is near to the test building, the vortex shedding peak in the lift spectra decreases and there are no obvious signs of periodicity, however, the energies of the high frequency components undergo an obvious increase.

3D numerical analysis of piled raft foundation for Ho Chi Minh City subsoil conditions

  • Amornfa, Kamol;Quang, Ha T.;Tuan, Tran V.
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.183-192
    • /
    • 2022
  • Piled raft foundations are widely used and effective in supporting high-rise buildings around the world. In this study, a piled raft system was numerically simulated using PLAXIS 3D. The settlement comparison results between the actual building measurements and the three-dimensional (3D) numerical analysis, were in good agreement, indicating the usefulness of this approach for the evaluation of the feasibility of using a piled raft foundation in Ho Chi Minh City subsoil. The effects were investigated of the number of piles based on pile spacing, pile length, raft embedment on the settlement, load sharing, bending moments, and the shear force of the piled raft foundation in Ho Chi Minh City subsoil. The results indicated that with an increased number of piles, increased pile length, and embedding raft depth, the total and differential settlement decreased. The optimal design consisted of pile numbers of 60-70, corresponding to pile spacings is 5.5-6 times the pile diameter (Dp), in conjunction with a pile length-to-pile diameter ratio of 30. Furthermore, load sharing by the raft, by locating it in the second layer of stiff clay, could achieve 66% of the building load. The proposed model of piled raft foundations could reduce the total foundation cost by 49.61% compared to the conventional design. This research can assist practicing engineers in selecting pile and raft parameters in the design of piled raft foundations to produce an economical design for high-rise buildings in Ho Chi Minh City, Viet Nam, and around the world.

Effectiveness of Reinforcement by Geogrid & Pile in Soft Clay (지오그리드와 말뚝에 의한 연약지반 보강효과)

  • 신은철;이상혁;이명원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.09a
    • /
    • pp.61-69
    • /
    • 2000
  • It is not easy to find a good soil condition due to the shortage of suitable land for construction work. The earth structure and buildings can be constructed over the soft soil. The soft soil must be treated either using the reinforcement element or dewatering. Most of land reclamation projects are being implemented along the south coast or west coast of the Korean Peninsula. The soils in these areas are covered with the soft marine clay, so soil and site improvement is the most important things to do. Pile foundation at the bottom of embankment can be constructed either in the soft ground or in the soil contaminated area. The purpose of this research is to develop "geogrid-reinforced piled embankment method" to prevent the differential settlement and increase the bearing capacity of soil. In this study, the effectiveness of the geogrid-reinforcement was studied by varying the space between piles and reinforcement conditions. Also, the geotechnical engineering properties of the embankment material and foundation soil were determined through the laboratory tests as well as the field tests. As a result, the site that the pile-spacing S = 3b with geogrid reinforcement is the most effective to reduce the differential settlement and increase load bearing capacity.

  • PDF

The multi-axial strength performance of composited structural B-C-W members subjected to shear forces

  • Zhu, Limeng;Zhang, Chunwei;Guan, Xiaoming;Uy, Brian;Sun, Li;Wang, Baolin
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.75-87
    • /
    • 2018
  • This paper presents a new method to compute the shear strength of composited structural B-C-W members. These B-C-W members, defined as concrete-filled steel box beams, columns and shear walls, consist of a slender rectangular steel plate box filled with concrete and inserted steel plates connecting the two long-side steel plates. These structural elements are intended to be used in structural members of super-tall buildings and nuclear safety-related structures. The concrete confined by the steel plate acts to be in a multi-axial stressed state: therefore, its shear strength was calculated on the basis of a concrete's failure criterion model. The shear strength of the steel plates on the long sides of the structural element was computed using the von Mises plastic strength theory without taking into account the buckling of the steel plate. The spacing and strength of the inserted plates to induce plate yielding before buckling was determined using elastic plate theory. Therefore, a predictive method to compute the shear strength of composited structural B-C-W members without considering the shear span ratio was obtained. A coefficient considering the influence of the shear span ratio was introduced into the formula to compute the anti-lateral bearing capacity of composited structural B-C-W members. Comparisons were made between the numerical results and the test results along with this method to predict the anti-lateral bearing capacity of concrete-filled steel box walls. Nonlinear static analysis of concrete-filled steel box walls was also conducted by using ABAQUS and the results agreed well with the experimental data.